首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3011篇
  免费   336篇
  国内免费   579篇
安全科学   586篇
废物处理   131篇
环保管理   622篇
综合类   1497篇
基础理论   254篇
环境理论   1篇
污染及防治   345篇
评价与监测   110篇
社会与环境   129篇
灾害及防治   251篇
  2024年   8篇
  2023年   36篇
  2022年   94篇
  2021年   116篇
  2020年   131篇
  2019年   85篇
  2018年   86篇
  2017年   113篇
  2016年   142篇
  2015年   146篇
  2014年   179篇
  2013年   220篇
  2012年   225篇
  2011年   237篇
  2010年   182篇
  2009年   169篇
  2008年   134篇
  2007年   205篇
  2006年   190篇
  2005年   186篇
  2004年   137篇
  2003年   134篇
  2002年   108篇
  2001年   99篇
  2000年   104篇
  1999年   59篇
  1998年   44篇
  1997年   51篇
  1996年   28篇
  1995年   46篇
  1994年   24篇
  1993年   30篇
  1992年   18篇
  1991年   16篇
  1990年   11篇
  1989年   12篇
  1988年   7篇
  1987年   14篇
  1986年   12篇
  1985年   6篇
  1983年   5篇
  1982年   7篇
  1981年   11篇
  1980年   11篇
  1979年   7篇
  1978年   7篇
  1973年   3篇
  1972年   8篇
  1971年   8篇
  1970年   3篇
排序方式: 共有3926条查询结果,搜索用时 31 毫秒
261.
研制了一种新型有害物质环境测试组合舱,该测试舱由舱体系(内舱和外舱)、恒温恒湿空气处理系统、空气循环装置和信号控制与处理软件组成。该测试舱具有可分别使用内舱和外舱对样品进行测试的特点,并采用美国FLUNT公司开发的air pack软件包对内舱和外舱的气流进行模拟与计算,并划分出内舱的层流区域,同时也对舱体系的性能进行了测试与评价。结果表明,有害物质环境测试组合舱的温湿度的相对标准偏差分别为0.04℃和0.7%,混合性达到90.7%。因此,该有害物质环境测试组合舱对温湿度控制精准,气流稳定,混合性能良好,能为室内空气污染研究提供条件稳定的室内仿真环境。  相似文献   
262.
叶堤 《装备环境工程》2007,4(1):21-24,66
简要介绍了材料大气腐蚀经济损失的估算方法,并以2002年为基准年,选择了重庆市主城中心的6个功能区作为代表性区域,运用腐蚀破坏剂量响应函数和使用寿命计算公式对锌材料的腐蚀经济损失进行了定量估算.结果表明,由大气污染腐蚀破坏锌材料造成的年直接经济损失约为4061.7万元,约为同期GDP的0.1%.其中,干沉降对经济损失总量的贡献率在71%~99%之间,均值为92%.  相似文献   
263.
战场环境下单兵防常规炸弹爆炸抗震减震技术装备及器材,由于受经费投入、战场环境等因素影响,一直没有成功研制并得到装备.通过室内砂箱振动台震动模拟试验,测试了不同柔性散粒材料在震动条件下的加速度值,对其减震性能作了一些初步的探讨.通过研究,可以看到柔性散粒材料在隔震方面具有其他材料所不具有的优越性能,可以作为制造隔震器材的首选.  相似文献   
264.
Flows of chemical substances need to be managed in a sustainable way. Sustainable development as a whole and the sustainable management of substance flows in particular are both time issues. These include the importance of the dynamics of substance flows and the way these interconnect with the use of resources, the avoidance of environmental pollution, and their effects on health and food production. Another prerequisite for the proper management of substance flows is justice within and between generations. This requires a systematic approach and a systematic analysis of the issues as well as of the actions to be taken. One tool for such a systematic approach is temporal analysis. It brings the temporal aspects of the substances themselves and of their intended use, as well as factors affecting the stakeholders, such as decision makers, producers and consumers, into focus. In the past, timing factors were rarely taken into account. Knowledge of the temporal dynamics of substance flows and their resultant outcomes, as well as of their interaction with ecological, economic and social systems, is a basic requirement for successful substance flow management. The need to include temporal aspects into substance flow management and how to do so is outlined here. Included are not only politicians but also practitioners and scientists who must explicitly take into account adequate time scales, points in time, breaks and other forms of time in planning and acting.  相似文献   
265.
The material flow analysis method can be used to assess the impact of environmental sanitation systems on resource consumption and environmental pollution. However, given the limited access to reliable data, application of this data-intensive method in developing countries may be difficult. This paper presents an approach allowing to develop material flow models despite limited data availability. Application of an iterative procedure is of key importance: model parameter values should first be assessed on the basis of a literature review and by eliciting expert judgement. If model outputs are not plausible, sensitive input parameters should be reassessed more accurately. Moreover, model parameters can be expressed as probability distributions and variable uncertainty estimated by using Monte Carlo simulation. The impact of environmental sanitation systems on the phosphorus load discharged into surface water in Hanoi, Vietnam, is simulated by applying the proposed approach.  相似文献   
266.
In Ireland, dairy farmyard washwater commonly comprises farmyard run-off and dairy parlour washings. Land-spreading is the most widely used method for treating this wastewater. However, this method can be labour intensive and can cause, in some cases, the degradation of surface and ground waters, mainly due to nitrogen contamination. In this study, a horizontal flow biofilm reactor (HFBR) with step-feed was constructed and tested in the laboratory, to remove organic carbon and nitrogen from a agricultural strength synthetic washwater (SWW). The HFBR had an average top plan surface area (TPSA) of 0.1002 m(2) and consisted of a stack of 45 polystyrene horizontal sheets--15 sheets embedded with 25 mm deep frustums above 30 sheets with 10 mm deep frustums. The frustums acted as miniature reservoirs. The sheets were alternately offset to allow the wastewater to flow horizontally along each sheet and vertically from sheet to sheet down through the reactor. Biofilms developed on the sheets and treated the wastewater. During the 212-d study, the total hydraulic loading rate based on the TPSA of the sheets was 35 l m(-2) d(-1). SWW was pumped for 10 min each hour, in a step feed arrangement at a rate of 23.33 l m(-2) d(-1) on to the top sheet during Phases 1 and 2, and 11.67 l m(-2) d(-1) onto Sheet 16 during Phase 1 (days 1-92) and onto Sheet 30 during Phase 2 (days 93-212). The substrate loading rate during Phases 1 and 2 was 94.8 g total chemical oxygen demand (COD) m(-2) d(-1) and 10.5 g total nitrogen (TN) m(-2) d(-1), based on the TPSA. At steady state in Phase 2, the unit achieved excellent carbon removal of 99.7% 5-day biochemical oxygen demand (BOD(5)) and 96.7% total COD, equivalent to TPSA removal rates of 67.5 g BOD(5)m(-2)d(-1) and 91.7 g COD m(-2) d(-1). The nitrogen removal percentages were 98.3% total ammonium-nitrogen (NH(4)-N(t)) and 72.8% TN, which equated to TPSA removal rates of 4.8 g NH(4)-N(t) m(-2) d(-1) and 7.6g TN m(-2) d(-1). No sloughing of solids or clogging of media occurred during the study. The unit was simple to construct and operate, with little maintenance.  相似文献   
267.
The measurement of the bed shear stress along vegetated river beds is essential for accurately predicting the water level, velocity and solute and sediment transport fluxes in computational hydroenvironmental models. Details are given herein of an experimental and theoretical study to determine the bed boundary shear stress along vegetated river beds introducing a novel field measuring method, namely the FliessWasserStammtisch (FST)-hemispheres. Although investigations have been conducted previously for sedimentary channels using the FST-hemispheres, this preliminary study is thought to be the first time that such hemispheres have been used to investigate the bed shear stresses in vegetated channels. FST-hemispheres were first developed by Statzner and Müller [1989. Standard hemispheres as indicators of flow characteristics in lotic benthos research. Freshwater Biology 21, 445-459] to act as an integrated indicator of the gross hydrodynamic stresses present near the bed. Test and validation data were found to be at least of the same order of magnitude for the stresses predicted from literature for sedimentary channels, with this study establishing the commencement of a database of calibrated FST-hemisphere laboratory data for vegetated channel beds. In a series of experiments, depths ranging from 0.1 to 0.28m were considered, equating directly to comparable conditions in small rivers or streams. The results of this study provide a basis for enabling the FST-hemispheres to be used to evaluate the boundary shear stress for a wider range of applications in the future, including vegetated river beds.  相似文献   
268.
The objective of this study was to determine the best performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) based on the use of four different bed materials as support for biomass immobilization. The bed materials utilized were polyurethane foam (PU), vegetal carbon (VC), synthetic pumice (SP), and recycled low-density polyethylene (PE). The AnSBBR, with a total volume of 7.2L, was operated in 8-h batch cycles over 10 months, and fed with domestic sewage with an average influent chemical oxygen demand (COD) of 358+/-110mg/L. The average effluent COD values were 121+/-31, 208+/-54, 233+/-52, and 227+/-51mg/L, for PU, VC, SP, and PE, respectively. A modified first-order kinetic model was adjusted to temporal profiles of COD during a batch cycle, and the apparent kinetic constants were 0.52+/-0.05, 0.37+/-0.05, 0.80+/-0.04, and 0.30+/-0.02h(-1) for PU, VC, SP, and PE, respectively. Specific substrate utilization rates of 1.08, 0.11, and 0.86mg COD/mgVS day were obtained for PU, VC, and PE, respectively. Although SP yielded the highest kinetic coefficient, PU was considered the best support, since SP presented loss of chemical constituents during the reactor's operational phase. In addition, findings on the microbial community were associated with the reactor's performance data. Although PE did not show a satisfactory performance, an interesting microbial diversity was found on its surface. Based on the morphology and denaturing gradient gel electrophoresis (DGGE) results, PE showed the best capacity for promoting the attachment of methanogenic organisms, and is therefore a material that merits further analysis. PU was considered the most suitable material showing the best performance in terms of efficiency of solids and COD removal.  相似文献   
269.
Abstract: For over 10 years, several species of salmon have been identified as either threatened or endangered in the Snake River Basin of Idaho. The United States Bureau of Reclamation, in cooperation with the National Marine Fisheries Service, has proposed a variety of plans to increase stream flows in the Snake River Basin to facilitate movement by juvenile salmon smolts to the ocean. This research examines two of the flow augmentation plans proposed by the Bureau of Reclamation as well as two alternative plans, one founded purely on existing priority‐based water rights and another geared toward minimizing the effects of flow augmentations on farms profitability. Results from a basin‐wide model of agricultural production in the Snake River Basin, the Snake River Agricultural Model, present evidence that (1) older water rights are used towards production of less valuable crops, (2) flow augmentation scenarios have unequal effects on farms profitability across agricultural regions within the basin, and (3) irrigation water is valued from US$4 to US$59 an acre‐foot.  相似文献   
270.
Abstract: Storm‐flow transients (i.e., hydrograph rise and fall dynamics) may represent an important aspect of understanding streamflow dynamics. However, little is known about how temporal resolution of transient data and climate variability may color these potential indicators of hydrologic pattern or condition. Warm‐season stream stage and rainfall were monitored continuously (5 min) during the 2002 water year in eight tributaries of the Little Miami River (Ohio), which drain 17‐58 km2 catchments. Rise rates generated using 5‐min data were different than those generated with mean daily data [calculated with the Indicators of Hydrologic Alteration (IHA) software], though fall rates were similar for fine and coarse temporal data. This result suggests that data with low temporal resolution may not be adequate to fully represent the dynamics of storm rise rates. Conversely, fall rates based on daily stage data (via IHA) were similar to those based on the 5‐min data, and so daily mean data may be appropriate for characterizing fall rates. We next analyzed the possible correlations between rainfall variability and storm‐flow stage dynamics. We derived rise and recession rates from storm stage hydrographs by assuming exponential rise and decay of a runoff peak. We found that raw rise rates (Rraw) were correlated with both the maximum rainfall rate and the time to the centroid of a rain event. We subsequently removed the trend based on these rainfall characteristics, which yielded new representations of rise rates abbreviated as Rrate and Rtcent, respectively, and that had lower variability than the uncorrected (raw) data. Fall rates were found to be independent of rainfall characteristics. Due to the predominant influence of stream hydrology upon aquatic biota and nutrient fluxes, our work suggests that these stage data analysis protocols can refine or otherwise reduce variability in these indices by accounting for relevant factors such as rainfall forcing. These protocols for derivation of transient indices should be tested for their potential to improve correlations between stream hydrology and temporally aligned biotic data and dissolved nutrient fluxes in streams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号