首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2707篇
  免费   306篇
  国内免费   2029篇
安全科学   159篇
废物处理   197篇
环保管理   293篇
综合类   3042篇
基础理论   329篇
污染及防治   960篇
评价与监测   45篇
社会与环境   15篇
灾害及防治   2篇
  2024年   2篇
  2023年   23篇
  2022年   96篇
  2021年   111篇
  2020年   111篇
  2019年   127篇
  2018年   130篇
  2017年   123篇
  2016年   191篇
  2015年   247篇
  2014年   307篇
  2013年   316篇
  2012年   396篇
  2011年   325篇
  2010年   273篇
  2009年   291篇
  2008年   258篇
  2007年   279篇
  2006年   320篇
  2005年   209篇
  2004年   168篇
  2003年   150篇
  2002年   93篇
  2001年   74篇
  2000年   77篇
  1999年   69篇
  1998年   59篇
  1997年   50篇
  1996年   36篇
  1995年   26篇
  1994年   25篇
  1993年   23篇
  1992年   23篇
  1991年   18篇
  1990年   8篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1979年   2篇
  1978年   1篇
  1970年   1篇
排序方式: 共有5042条查询结果,搜索用时 328 毫秒
201.
为考察不同接种污泥培养好氧硝化颗粒污泥的可行性,分别采用絮状活性污泥和厌氧颗粒污泥作为接种污泥,在气升内循环序批式反应器(SBAR)中进行好氧硝化颗粒污泥的培养,探讨不同性质的种泥对好氧硝化颗粒污泥的培养及其性能影响.结果表明,以絮状活性污泥、厌氧颗粒污泥为接种污泥均可培养出好氧硝化颗粒污泥,其颗粒成熟时间分别为62和80 d,SVI为25.52和27.68 mL/g,氨氮去除率为93.15%和75.43%,COD去除率在90%以上,SOUR、Zeta和EPS显著提高,微生物活性及疏水性能增强,以絮状活性污泥培养的好氧硝化颗粒污泥性能更优.  相似文献   
202.
腐植酸强化苯酚厌氧发酵降解   总被引:1,自引:0,他引:1  
在无外加电子受体的条件下,首次研究了腐植酸对活性污泥厌氧降解苯酚的影响。研究结果表明,腐植酸Suwannee River Humic Acid Standard(SR-HA)、Leonardite Humic Acid Standard(L-HA)和Pahokee Peat Humic Acid(PP-HA)作为氧化还原介体能够提高苯酚的厌氧发酵降解效率。其中腐植酸PP-HA对苯酚的厌氧降解表现出了最为明显的强化效果,反应进行36 h后,苯酚去除率提高了18.5%。当单独投加的PP-HA浓度在0至100 mg/L范围内,苯酚的厌氧降解效率随着腐植酸浓度增加而逐渐提高,而浓度大于100 mg/L后,腐植酸对苯酚降解效率的促进作用随着PP-HA浓度的增加逐渐减缓。除此之外,当低浓度的蒽醌-2-磺酸钠(AQS)(0.02 m M)和PP-HA(20 mg/L)在反应体系中共存时,相比于无介体存在的对照组,苯酚厌氧降解效率提高了约1.4倍。产物分析结果表明,乙酸和CH4作为苯酚发酵降解的重要产物被检测出来。最后,在氧化还原介体腐植酸的存在下,初步探讨了苯酚厌氧发酵降解的代谢途径。  相似文献   
203.
采用玉米芯为碳源,聚乙烯醇(PVA)为包埋载体,饱和硼酸(H3BO3)为交联剂,研究了硫酸盐还原菌污泥(SRBS)、铁屑、麦饭石共固处理合成煤矿酸性废水的最优配比与机理,并分析了固定化过程中小球稳定性及活性的变化规律。实验结果表明,SRBS投加量是影响处理效果的最显著因子,当投加30%SRBS、2%铁屑、3%麦饭石时SO2-4、Mn2+去除率分别为94.13%和84.39%,溶液p H为7.03,未检测出Fe2+;随着交联时间的延长,小球膨胀率及SO2-4还原率分别呈线性与指数下降,从保持小球稳定性与活性角度考虑,可将交联时间设定为4~8 h;该法可为市政污泥的处置以及生物法处理煤矿酸性废水的工程应用提供技术参考。  相似文献   
204.
氨气是城市污水污泥产生的恶臭气体之一,控制或抑制其产生是资源化利用甚至处置过程中至关重要的.通过改进氨气测量方法定量分析外掺页岩对污泥氨气挥发的抑制作用和机理,实验研究了页岩掺量、陈放形式以及环境温度对污泥氨气挥发浓度的影响.结果表明,外掺页岩对污泥氨气挥发具有明显的抑制作用,随温度升高、陈放时间延长抑制效果有所减弱但仍具有明显作用;页岩对污泥氨气挥发的抑制作用主要为对氨气的吸附作用.  相似文献   
205.
采用EGSB—SBR工艺处理实际果汁废水(COD 2 608~6 500 mg/L,p H 5.0~7.0)。在EGSB反应器成功启动及驯化完成的情况下,连续运行49 d。实验结果表明:第25天起,控制EGSB回流比为3.00∶1,EGSB反应器可在无须添加Na HCO3的条件下稳定运行,从而降低了废水处理成本;第25天起,平均进水COD,BOD5,SS分别为5 968,2 130,1 020 mg/L,平均出水COD,BOD5,SS分别降至131,11,50 mg/L,平均COD,BOD5,SS去除率分别为98%,99%,95%;组合工艺对该实际果汁废水具有良好的处理效果。  相似文献   
206.
曾冠武 《化工环保》2015,35(3):279-283
瓦斯泥是高炉副产物,因其中富含锌,直接用于烧结会增加高炉锌负荷。在分析了瓦斯泥的矿物特征的基础上,综述了选矿法、化学浸出法、直接还原法等几种瓦斯泥有价成分的回收利用方法。选矿法根据碳、锌、铁的性质及赋存状态的差异分离各物质,具有工艺简单、成本低的优点,但分离不彻底、回收率低;化学浸出法使锌进入溶液而其他矿物不溶或微溶,分离效果较好,但处理量小,后续处理难度大;直接还原法是在高温下使瓦斯泥中的金属还原,锌蒸发后进入烟气,最终可得到含氧化锌较高的烟尘和含金属铁的脱锌瓦斯泥,该法适应性强、处理量大、分离效果好,是目前应用较为广泛的瓦斯泥处理方法,但其设备投资大。  相似文献   
207.
用改进聚乙烯醇-硼酸法将活性污泥制成固定化颗粒,考察了改进聚乙烯醇-硼酸法的最佳条件及固定化颗粒的性能。实验结果表明:改进聚乙烯醇-硼酸法的最佳条件为聚乙烯醇质量分数6.5%、包泥比(包埋剂与活性污泥质量比)1.2:1、二氧化硅质量分数1.5%、活性炭质量分数0.3%、海藻酸钠质量分数0.6%;用最佳条件下制得的固定化颗粒处理模拟化工废水,连续运行15d后的COD去除率达90%以上,且固定化颗粒耐冲击负荷和pH变化能力强;固定化颗粒对模拟化工废水的COD去除速率随进水COD的变化曲线类似于米氏方程所描述的反应初速度随底物浓度的变化规律。  相似文献   
208.
用造纸污泥制备改性木质素磺酸钠   总被引:2,自引:0,他引:2  
以甲醛作改性剂,用造纸污泥制备改性木质素磺酸钠,通过正交实验考察了各种因素对改性木质素磺酸钠减水性能的影响。实验结果表明:木质素磺酸钠进行羟甲基化反应时,在10g粗品木质素中加入甲醛7mL、反应温度为45℃、反应液pH为10—11的最佳条件下,改性木质素磺酸钠的减水率为25.2%。经测试,改性木质素磺酸钠的各项性能指标均达到普通减水剂的国家标准要求。  相似文献   
209.
两种表面活性剂对剩余污泥产酸影响的比较研究   总被引:2,自引:0,他引:2  
在批式反应器中研究了常温下2种(两性和阳离子)表面活性剂对剩余污泥产酸的影响,结果表明,2种表面活性剂均能较大幅度地提高剩余污泥生产有机酸的产量.在污泥发酵的第4天,0.1g·g-1(表面活性剂与污泥干重比,下同)的两性和阳离子表面活性剂可分别使剩余污泥生产有机酸的浓度达到226.4和861.4 mg·L-1(以COD计,下同),而空白试验中生成的有机酸浓度仅为3.2 mg·L-1.同时,剩余污泥的有机酸产量随表面活性剂加入量的增加而增加.当表面活性剂的加入量低于0.2 g·g-1时,用两性表面活性剂处理的剩余污泥中有机酸浓度仅为用阳离子表面活性剂处理的剩余污泥中有机酸浓度的50%;当表面活性剂的加入量增至0.3 g·g-1时,两者的有机酸最大产量接近.此外,表面活性剂的种类和加入量对有机酸的组成分布也有一定的影响.  相似文献   
210.
针对165℃、30min预处理后的混合污泥,进行高温厌氧消化的连续试验.研究了在不同的水力停留时间(HRT)下的产气量、有机物的分解率等指标,探讨了"热处理 高温消化"实用化的可行性.结果表明,总固体(TS)为70g·L-1、预热处理后的混合污泥经高温厌氧消化,在HRT.为10、20、30d的条件下,产气率为2.82、1.70和1.19 L·L-1·d-1;降解单位COD的产气量为968、1053和1091 L·kg-1;COD分解率为47%~52%;有机物分解率与HRT的关系符合一级反应动力学关系.COD物质平衡计算结果表明,基质中50%的固态有机物被分解转化,生物气中的甲烷含量可达59.1%.本研究中的厌氧消化反应可归纳为C8.38H19.7O7.59N 3.86H2O→4.38CH4 2.99CO2 NH4 HCO3-.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号