首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3088篇
  免费   417篇
  国内免费   1686篇
安全科学   265篇
废物处理   37篇
环保管理   649篇
综合类   3117篇
基础理论   265篇
污染及防治   335篇
评价与监测   384篇
社会与环境   100篇
灾害及防治   39篇
  2024年   49篇
  2023年   198篇
  2022年   300篇
  2021年   276篇
  2020年   305篇
  2019年   231篇
  2018年   201篇
  2017年   194篇
  2016年   209篇
  2015年   250篇
  2014年   282篇
  2013年   251篇
  2012年   274篇
  2011年   275篇
  2010年   211篇
  2009年   189篇
  2008年   173篇
  2007年   198篇
  2006年   160篇
  2005年   144篇
  2004年   114篇
  2003年   115篇
  2002年   102篇
  2001年   85篇
  2000年   67篇
  1999年   48篇
  1998年   61篇
  1997年   48篇
  1996年   36篇
  1995年   28篇
  1994年   27篇
  1993年   17篇
  1992年   14篇
  1991年   8篇
  1990年   6篇
  1989年   2篇
  1988年   3篇
  1987年   9篇
  1986年   5篇
  1985年   3篇
  1984年   1篇
  1982年   7篇
  1981年   2篇
  1980年   3篇
  1979年   1篇
  1978年   6篇
  1977年   2篇
  1975年   1篇
排序方式: 共有5191条查询结果,搜索用时 0 毫秒
71.
葛祥  吴健  高松  冯加良  陈俊伟  张舒惟  焦正 《环境科学》2021,42(12):5663-5672
于冬春两季在华东3个典型石化化工集中区设置环境空气观测点,利用PUF大气被动采样技术(PUF-PAS)采集大气中半挥发性有机化合物(SVOCs),使用气相色谱-质谱联用仪(GC-MS)进行分析.获得59种SVOCs的浓度,包括25种多环芳烃(PAHs)、24种正构烷烃及10种藿烷,并结合主成分分析和特征比值法解析PAHs来源.结果表明:①各观测点正构烷烃贡献率最高,其次是PAHs,分别超过60%和30%;②根据各化合物冬春季浓度变化并结合风向进行分析,推测正构烷烃C18、C29 αβ-藿烷和C30αβ-藿烷与石油化工排放有关;③PAHs单体以菲(Phe)、荧蒽(Fla)、萘(Nap)、芴(Flu)和芘(Pyr)为主,合计占比高达90.0%;④主成分分析显示观测点PAHs主要来自化石燃料燃烧、机动车尾气和石化工艺排放等,3类来源对PAHs的贡献率分别为56.0%、19.2%和8.6%,基于特征比值法的PAHs来源解析予以了验证.  相似文献   
72.
研究了长江攀枝花、宜宾、泸州、重庆、涪陵、三峡、岳阳、武汉、九江和南京共计10个重点江段枯水期和丰水期表层水中19种多环芳烃(PAHs)及其15种衍生物(SPAHs)的分布和来源,评估了长江PAHs类污染的健康风险及时空差异.结果表明,长江表层水中∑PAHs、∑SPAHs平均浓度分别为(147.3±59.8)、(73.2±29.7) ng·L-1,检出率分别为82.9%、69.5%,其中2~3环(S)PAHs所占比例为79%.在SPAHs中,∑NPAHs(硝基取代PAHs)、∑MPAHs(甲基取代PAHs)、∑OPAHs(氧化PAHs)的平均浓度分别为(27.0±4.5)、(24.7±15.5)、(17.1±11.9) ng·L-1.根据分子比值法及主成分分析可知,长江重点江段PAHs主要来源于生物质、化石及液体燃料燃烧,SPAHs主要来源于燃烧源和光化学转化,SPAHs及PAHs通过大气沉降汇入水体.采用毒性当量因子浓度计算对长江重点江段PAHs进行健康风险评估,结果表明在枯水期具有致癌性PAHs的∑TEQBaP值(苯并芘毒性当量)较高,其中岳阳、武汉江段的BaP毒性当量浓度高于我国地表水规定阈值,应当高度重视长江流域PAHs在枯水期引起的健康风险.  相似文献   
73.
尚玥  余欢  茅宇豪  王成  谢鸣捷 《环境科学》2021,42(3):1228-1235
对南京北郊2018年9月~2019年9月PM2.5中有机组分的吸光性质进行了研究,并利用PM2.5化学组成及主成分分析法分析该地区吸光性有机碳(棕碳,brown carbon,BrC)的主要来源.结果表明,水溶性有机碳(water-soluble organic carbon,WSOC)和甲醇可提取有机碳(methanol extractable organic carbon,MEOC)在365 nm处光吸收系数(Abs365,w和Abs365,m)的平均值分别为(3.22±2.18)Mm-1和(7.69±4.93)Mm-1.Abs365,w和Abs365,m分别与WSOC(r=0.72,P<0.01)和MEOC(r=0.62,P=0.04)的质量浓度显著相关,均表现为冬高夏低,夜高昼低的时间变化特征.这可归结于冬季和夜间的气象特征(例如边界层高度降低和大气稳定度升高)、冬季一次源排放的增加以及夏季和白天更强的"光漂白作用".Abs365,m/Abs365,w的年均值(2.60±0.92)远高于MEOC/WSOC(质量浓度比值,1.37±0.30),表明MEOC中非水溶性组分的吸光作用更强,在BrC的吸光作用中占主导地位.WSOC、MEOC、Abs365,m和K+均未表现出强相关性(r<0.60),因此生物质燃烧不是该地区BrC的主要一次来源.WSOC和MEOC质量吸收效率(MAE365,w和MAE365,m)及其比值(MAE365,m/MAE365,w)的季节变化和Abs365相同.MEOC中非水溶性组分的MAE365[(4.10±5.15)m2·g-1]分别是MAE365,w和MAE365,m的6.0和2.9倍,支持BrC的吸光作用受非水溶性有机组分主导这一推断.和WSOC的埃氏吸收指数(ÅWSOC)相比,MEOC的埃氏吸收指数(ÅMEOC)随时间变化更显著,这可能与非水溶性吸光组分排放的季节变化有关.主成分分析结果显示,本研究PM2.5中有机组分的吸光作用主要来源于二次形成过程和人为活动相关的一次排放,而不是生物质燃烧.  相似文献   
74.
于2015年10月、12月和2016年3月、8月在重庆大学A区采集秋、冬、春、夏4个季节PM2.5样品,观察其微观形貌,分析含碳气溶胶及其碳组分的浓度水平,并探讨其季节变化及进行来源解析.结果表明,重庆沙坪坝区PM2.5中有机碳(OC)、元素碳(EC)、烟灰(char)和烟炱(soot)的年均质量浓度分别为20.66、6.16、5.42和0.74 μg·m-3.OC季节变化显著,冬季最高,夏季最低;EC秋季最高,冬季最低,但与其它季节相差不大;char表现为秋季 > 春季 > 冬季 > 夏季;soot表现为秋季 > 夏季 > 春季 > 冬季.正定矩阵因子(PMF)解析出3个因子,分别代表生物质/煤燃烧和道路扬尘的混合源(52.7%)、汽油机动车排放源(22.9%)和柴油机动车排放源(24.4%).机动车尾气是秋、春和夏3个季节含碳气溶胶的主要来源,冬季主要受煤炭/生物质燃烧和道路扬尘混合源的影响.秋季污染事件可能是因为本地及周边城市汽油车通行量增加,冬季污染事件可能是本地煤炭/生物质燃烧排放增加和周边农村地区输入的共同作用,春季污染事件可能与来自西北方向的沙尘长距离传输有关.  相似文献   
75.
成都市PM10中多环芳烃来源识别及毒性评估   总被引:1,自引:0,他引:1  
对成都市2009年冬夏两季可吸入颗粒物(PM10)中16种多环芳烃(PAHs)含量进行了研究,并进一步分析其空间分布、组成特征及来源.结果表明,16种PAHs中15种被普遍检出(Nap未检出),冬季和夏季的ΣPAHs浓度范围分别为40.25~150.68ng/m3和44.51~71.16ng/m3,平均浓度分别为88.36ng/m3和64.21ng/m3.空间分析表明,PAHs浓度在工业区较高,背景点较低.从PAHs组分分析结果显示,低环含量较低,4~6环所占比例较大,其比例范围为86.7%~96.1%.各组分含量季节差异不明显.利用特征化合物比值法、等级聚类法、PCA解析法分析了污染源类型,结果表明成都市PM10中PAHs的主要来源是机动车尾气排放源,以及煤与木材燃烧源.通过BaP当量(BaPE)进行了毒性评估,结果显示成都市冬夏两季的BaPE均值分别为13.41ng/m3和9.54ng/m3.  相似文献   
76.
余辉 《环境科学研究》2014,27(11):1243-1250
琵琶湖富营养化全面有效的控制得益于对流域污染源的系统控制. 琵琶湖流域污染源系统控制包括通过立法与监管严格控制工厂与企业的污水排放、城镇污水管网与大型污水处理设施的高度覆盖、农业集落污水处理设施的全覆盖三部分,流域污水处理系统的全覆盖及高度处理技术的普及是其最为成功的经验之一. 琵琶湖流域城镇下水道普及率达86.4%,主要污染物——TN、TP及CODMn的去除率分别高达90.0%、98.7%及94.6%. 琵琶湖流域同时实施了净化槽普及、设置农业集落排水处理设施、初期雨水净化处理及农田循环灌溉等具有地方特色的面源治理对策. 通过综合治理,琵琶湖主要入湖污染负荷明显减少,与1985年相比,2012年CODMn点源污染负荷减少了76.8%,TN减少了45.5%,TP减少了65.6%. 与之比较,我国的湖泊治理存在的问题主要包括有针对性的地方排放标准的缺失及执法力度的不足、城镇污水深度处理及运营管理技术上的差距、面源污染对策的严重不足.   相似文献   
77.
针对空气中PM2.5污染物的传播问题,以西安市的情况为实例,合理考虑风力等天气和季节因素的影响,建立能够刻画该地区PM2.5的发生和演变规律的有风高斯点源扩散数学模型,代入相关数据后,利用MATLAB软件求解出PM2.5污染源由一区扩散到另一区的浓度,最后由综合的各区总浓度得出PM2.5污染源的位置,并与该市实际检测到PM2.5数据进行对比分析。结果表明,确定的位置比较准确,该方法能为城市污染治理提供参考。  相似文献   
78.
介绍了一种基于海洋移动式平台应用的安全信息预警与保护装置的研制,实现具有移动式平台海上安全信息采集、记录、预警、保护及再现等功能。  相似文献   
79.
海州湾表层沉积物重金属的来源特征及风险评价   总被引:8,自引:3,他引:8  
李飞  徐敏 《环境科学》2014,35(3):1035-1040
根据2009年12月海州湾海域17个站位的环境调查资料,通过地统计学方法分析表层沉积物中6种重金属(Cd、As、Cu、Pb、Cr、Zn)的来源特征,采用潜在生态风险指数法进行重金属风险评价.结果表明,重金属分布格局整体呈西南高东北低、随离岸距离增大而减小的趋势;陆源污染输入是海州湾海域重金属的重要污染来源;有机碳含量、底质粒径和硫化物是影响重金属含量及其分布的重要因素;风险评价显示海州湾沉积物重金属总体处于中等生态风险状况,风险相对较高主要分布在龙王河口到临洪河口的近岸海域,潜在生态风险指数Cd>As>Cu>Pb>Cr>Zn,Cd是主要的生态风险贡献因子.  相似文献   
80.
In January 2013, a long-lasting severe haze episode occurred in Northern and Central China; at its maximum, it covered a land area of approximately 1.4 million km2. In Wuhan, the largest city in Central China, this event was the most severe haze episode in the 21st century. Aerosol samples of submicron particles (PM1.0) were collected during the long-lasting haze episode at an urban site and a suburban site in Wuhan to investigate the ion characteristics of PM1.0 in this area. The mass concentrations of PM1.0 and its water-soluble inorganic ions (WSIIs) were almost at the same levels at two sites, which indicates that PM1.0 pollution occurs on a regional scale in Wuhan. WSIIs (Na+, NH4+, K+, Mg2+, Ca2+, Cl-, NO3- and SO42-) were the dominant chemical species and constituted up to 48.4% and 47.4% of PM1.0 at WD and TH, respectively. The concentrations of PM1.0 and WSIIs on haze days were approximately two times higher than on normal days. The ion balance calculations indicate that the particles were more acidic on haze days than on normal days. The results of the back trajectory analysis imply that the high concentrations of PM1.0 and its water-soluble inorganic ions may be caused by stagnant weather conditions in Wuhan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号