首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   870篇
  免费   89篇
  国内免费   106篇
安全科学   306篇
废物处理   19篇
环保管理   164篇
综合类   384篇
基础理论   71篇
污染及防治   29篇
评价与监测   37篇
社会与环境   37篇
灾害及防治   18篇
  2024年   3篇
  2023年   25篇
  2022年   39篇
  2021年   35篇
  2020年   18篇
  2019年   35篇
  2018年   29篇
  2017年   53篇
  2016年   38篇
  2015年   49篇
  2014年   44篇
  2013年   60篇
  2012年   49篇
  2011年   73篇
  2010年   40篇
  2009年   59篇
  2008年   35篇
  2007年   54篇
  2006年   58篇
  2005年   38篇
  2004年   29篇
  2003年   37篇
  2002年   31篇
  2001年   21篇
  2000年   27篇
  1999年   15篇
  1998年   20篇
  1997年   6篇
  1996年   5篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1971年   1篇
排序方式: 共有1065条查询结果,搜索用时 15 毫秒
241.
Mining is essentially a destructive developmental activity, where ecology suffers at the altar of economy. Unfortunately, in most regions of the Earth, the underground geological resources are superimposed by biological resources (forests). This is particularly evident in India. Hence mining operations necessarily involve deforestation, habitat destruction, biodiversity erosion and destruction of geological records which contain information about past biodiversity. Extraction and the processing of ores and minerals also lead to widespread environmental pollution.However, mankind cannot afford to give up the underground geological resources which are the basic raw materials for development. An unspoiled nature can provide ecological security to people but cannot bring economic prosperity. Scientific mining operations accompanied by ecological restoration and regeneration of mined wastelands and judicious use of geological resources, with search for eco-friendly substitutes and alternatives must provide the answer.A case study from the Bijolia quarrying area in Rajasthan, India, provides some sensational revelations of the impact of mining on the human ecosystem.  相似文献   
242.
地下铁矿扩界开采地表影响范围预测   总被引:1,自引:0,他引:1  
矿山开采活动形成的地下空区往往会对地表造成一定的影响,为确保矿山的安全生产并提供地表影响范围计算的科学依据,现根据某铁矿采用下向胶结充填法采矿需进行扩界开采的工程实际,将该矿的地表影响范围运用概率积分法进行预测。在已知该矿9条勘探线矿体形状的基础上,根据图件可得矿体的埋深、倾角、产状等基础资料,对于较薄矿体以及尖灭部位需做适当的处理,提供更为客观正确的计算数据。以地表沉陷数值的大小为参考标准运用概率积分法计算出地表移动边界和需监测范围,并计算倾斜、曲率和水平应变判断地表建筑物是否位于安全区。可得矿区周边房屋均处于安全区内和地表移动边界之外,扩界开采对地表影响较小,为同类工程提供参考和建议。  相似文献   
243.
以某采煤沉陷区内的典型输电铁塔及其复合防护板基础工程为背景,考虑地基-基础-上部铁塔结构的共同作用,对不同板厚复合防护板基础的抗采动变形性能进行了研究,并引入"保护作用"的概念,对独立基础和复合防护板基础的抗变形性能进行了分析。研究表明,设置复合防护板后,与独立基础相比,可明显减少铁塔支座的水平位移及上部结构的应力,支座位移与结构应力随着复合大板厚度的增大而减小,其减小的幅度随着板厚的增大而趋缓,当板厚达到一定数值以后几乎不再减小。提出的复合防护板的厚度可取铁塔基础长向根开的1/45~1/35的建议,以供采煤沉陷区内复合防护板基础的设计参考。  相似文献   
244.
The intensity of environmental regulation (ERI) affects the short-term effect of the level of green mining (GML), and which structure determines the long-term mechanism. Based on the panel data from 2001 to 2015, with the dynamic panel model and system GMM estimation method were employed to test the influence of heterogeneous environmental regulation on green mining and its transmission mechanism. The results show that, there is a “U” type nonlinear relationship between the ERI and GML. The direct effect of command-control-based (CAC) and the market incentive-based (MBI) environmental regulation on green development of mining shows the characteristics of inhibition and promotion. There is a “U” type of indirectly moderating effect between technological innovation and the energy consumption structure on the GML. The technological innovation promotes the green development of the mining industry only after pass the inflection point of MBI, while the CAC plays a significant guiding role in upgrading of the energy consumption structure. There is an inhibition and promotion effect of MBI on the GML in the southeast coastal area, and the CAC is not significantly. Meanwhile, both of the ERI shows no positive effects in the central and western inland region.  相似文献   
245.
Surface mining is a global phenomenon. When dealing with the land disturbances caused by surface mining operations, the terms remediation, reclamation, restoration and rehabilitation (R4) are commonly used interchangeably or otherwise vaguely defined. Expectations associated with these terms may differ significantly from one stakeholder to another, however. Regulators, industry, environmental practitioners, local communities and the general public therefore stand to benefit from a precise terminology based on agreed-upon end-goals. The latter range from the avoidance of exposure to pollutants (remediation) to the full recovery of the original ecosystem (restoration). Although frequently claimed as the end-goal, restoration may often not be unachievable, because of altered hydrology, habitat fragmentation, contamination, climate change, prohibitive costs and other environmental and socio-economic boundary conditions. Mostly, the definitions of reclamation and rehabilitation may overlap in their definitions and approaches. Here we attempt the creation of a road-map that can clearly translate end-goals for each of the R4 terms. According to the definitions encountered and exposed here, reclamation, which aims to recover key ecosystem services and biogeochemical functions within a replacement ecosystem or rehabilitation, which implies a repurposing of the landscape, may be the best approaches to deal with surface mining legacies.  相似文献   
246.
The study of gold sites in the Migori Gold Belt, Kenya, revealed that the concentrations of heavy metals, mainly Hg, Pb and As are above acceptable levels. Tailings at the panning sites recorded values of 6.5–510 mg kg–1 Pb, 0.06–76.0 mg kg–1 As and 0.46–1920 mg kg–1 Hg. Stream sediments had values of 3.0–11075 mg kg–1 Pb, 0.014–1.87 mg kg–1 As and 0.28–348 mg kg–1 Hg. The highest metal contamination was recorded in sediments from the Macalder stream (11075 mg kg–1 Pb), Nairobi mine tailings (76.0 mg kg–1 As) and Mickey tailings (1920 mg kg–1 Hg). Mercury has a long residence time in the environment and this makes its emissions from artisan mining a threat to health. Inhaling large amounts of siliceous dust, careless handling of mercury during gold panning and Au/Hg amalgam processing, existence of water logged pits and trenches; and large number of miners sharing poor quality air in the mines are the major causes of health hazards among miners. The amount of mercury used by miners for gold amalgamation during peak mining periods varies from 150 to 200 kg per month. Out of this, about 40% are lost during panning and 60% lost during heating Au/Hg amalgam. The use of pressure burners to weaken the reef is a deadly mining procedure as hot particles of Pb, As and other sulphide minerals burn the body. Burns become septic. This, apparently, leads to death within 2–3 years. On-site training of miners on safe mining practices met with enthusiasm and acceptance. The use of dust masks, air filters and heavy chemical gloves during mining and mineral processing were readily accepted. Miners were thus advised to purchase such protective gear, and to continue using them for the sake of their health. The miners' workshop, which was held at the end of the project is likely to bear fruit. The Migori District Commissioner and other Government officials, including medical officers attended this workshop. As a result of this, the Government is seriously considering setting up a clinic at Masara, which is one of the mining centres in the district. This would improve the health of the mining community.  相似文献   
247.
In situ aeration by means of the Airflow technology was proposed for landfill conditioning before landfill mining in the framework of a reclamation project in Northern Italy. A 1-year aeration project was carried out on part of the landfill with the objective of evaluating the effectiveness of the Airflow technology for landfill aerobization, the evolution of waste biological stability during aeration and the effects on leachate and biogas quality and emissions.The main outcomes of the 1-year aeration project are presented in the paper.The beneficial effect of the aeration on waste biological stability was clear (63% reduction of the respiration index); however, the effectiveness of aeration on the lower part of the landfill is questionable, due to the limited potential for air migration into the leachate saturated layers.During the 1-year in situ aeration project approx. 275 MgC were discharged from the landfill body with the extracted gas, corresponding to 4.6 gC/kgDM. However, due to the presence of anaerobic niches in the aerated landfill, approx. 46% of this amount was extracted as CH4, which is higher than reported in other aeration projects. The O2 conversion quota was lower than reported in other similar projects, mainly due to the higher air flow rates applied.The results obtained enabled valuable recommendations to be made for the subsequent application of the Airflow technology to the whole landfill.  相似文献   
248.
The transportation of natural gas often relies on pipelines which require constant monitoring and regular maintenance to prevent spills or leaks. Pipeline incidents could pose a huge adverse impact on people, the environment, and society. Numerous efforts have been invested to identify contributing factors to pipeline incidents so that countermeasures could be developed to proactively prevent some incidents and reduce incident severities or impacts. However, the countermeasures may need to vary for different incidents due to the potential heterogeneity between incidents, and such heterogeneity is likely related to the geology, weather, and built environment which vary across space and time domain. The objective of this study is to revisit the correlates of pipeline incidents, focusing on the spatial and temporal patterns of the correlations between natural gas pipeline incident severity and contributing factors. This study leveraged an integrated spatio-temporal modeling approach, namely the Geographically and Temporally Weighted Ordered Logistic Regression (GTWOLR) to model the natural gas pipeline incident report data (2010–2019) from the U.S. Pipeline and Hazardous Material Safety Administration. Text mining was performed to extract additional information from the narratives in reports. Results show several factors have significant spatiotemporally varying correlations with the pipeline incident severity, and these factors include excavation damage, gas explosion, iron pipes, longer incident response time, and longer pipe lifetime. Findings from this study are valuable for pipeline operators, end-users, responders to jointly develop localized strategies to maintain the natural gas distribution system. More implications are discussed in the paper.  相似文献   
249.
为优化干旱矿区浮选单元的取水结构,降低市政污水处理厂二级出水的回用风险,以内蒙古某铜钼矿为代表性研究对象,采用臭氧氧化工艺对该区域市政污水处理厂二级出水进行深度处理,探讨其对水中病原微生物的去除效果,研究处理后的二级出水对浮选指标的影响以及相应的健康风险,评估氧化处理工艺的二级出水回用于选矿浮选单元的适用性。结果表明,二级出水中大肠杆菌浓度具有明显的季节分布性,最高浓度可达3.85 ×106 个·mL−1,轮状病毒检出率为77.78%,直接回用具有一定风险;而且浮选用水的水质对浮选指标影响较大,随着COD、悬浮物浓度的下降,精矿中铜、钼的品位和回收率相应增加,浮选指标得到改善;采用臭氧氧化处理工艺二级出水,在臭氧投加量为6 mg·L−1、氧化时间为10 min、不调节pH的情况下,二级出水中粪大肠杆菌衰减率可达3.44lg 个·L−1。在该工艺条件下,使用处理后的二级出水进行浮选,浮选产品指标合格,且粪大肠杆菌单次暴露感染风险为4.71×10−8~1.35×10−6,年暴露感染风险为1.59×10−6~4.70×10−4,均为可接受水平。  相似文献   
250.
针对云南个旧矿区铅污染稻田土壤,研究了复合钝化剂S1(纳米活性炭+硅钾钙镁肥)、S2(火山石+钙镁磷肥+有机肥)和叶面硅肥F单一及联合施用共5种不同调控处理 (S1、S2、F、S1+F、S2+F)的田间修复效果及对稻米铅累积的影响。结果表明,5种调控措施对水稻均能产生增产效应,其中两种联合处理(S1+F、S2+F)水稻的增产效果明显优于单一处理(S1、S2、F);经过1个水稻生长周期,5种调控处理土壤pH值较对照均有上升,土壤酸可提取态Pb含量均有降低。与对照相比,S2+F处理水稻增产29.7%,土壤pH上升0.48个单位,土壤酸可提取态Pb降低45.5%,糙米Pb含量降低80.4%、且远低于国家食品卫生标准(GB 2762-2012)。采用复合钝化剂S2(火山石+钙镁磷肥)基施与水稻灌浆期和抽穗期分别喷施叶面硅肥F的土壤钝化-农艺联合调控措施能有效阻控个旧矿区污染土壤中Pb的迁移,降低糙米中Pb的含量,提高矿区稻米安全质量,可在Pb污染农田推广应用。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号