首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   243篇
  免费   26篇
  国内免费   243篇
安全科学   29篇
废物处理   16篇
环保管理   5篇
综合类   245篇
基础理论   122篇
污染及防治   87篇
评价与监测   2篇
社会与环境   5篇
灾害及防治   1篇
  2024年   2篇
  2023年   8篇
  2022年   14篇
  2021年   17篇
  2020年   30篇
  2019年   25篇
  2018年   38篇
  2017年   35篇
  2016年   38篇
  2015年   50篇
  2014年   29篇
  2013年   61篇
  2012年   44篇
  2011年   46篇
  2010年   23篇
  2009年   13篇
  2008年   6篇
  2007年   10篇
  2006年   6篇
  2005年   9篇
  2003年   1篇
  2002年   2篇
  2000年   3篇
  1999年   1篇
  1997年   1篇
排序方式: 共有512条查询结果,搜索用时 476 毫秒
351.
Developing various approaches for preparing high performance materials has long been topics and tasks both for scientists and for engineers.Despite that many methods have been developed for preparing nanomaterials,developing simple and environment-friendly ways for preparing nanomaterials is very attractive.A simple approach of synthesizing Fe3O4 nanoparticles by arc-discharge submerging in water was reported.The results showed that by this method Fe3O4 nanoparticles can be synthesized in large scale.The as-prepared Fe3O4 nanoparticles exhibit uniform spherical shape and their diameters varied with arc-discharging parameters.The experimental results showed that the size of the synthesized Fe3O4 nanoparticles can be controlled through adjusting the processing parameters.Since no vacuum system has been used,the synthesizing process is greatly simplified.In addition,only cheap deionized water and industrial iron bar are used and no pollution or harmful by-products are found in the synthesis process.It indicated that the present approach is a simple,low-cost and environment-friendly for preparing nanoparticles.  相似文献   
352.
The adsorption potential of titanium dioxide (TiO2) nanoparticles for removing arsenic from drinking water was evaluated. Pure and iron-doped TiO2 particles are synthesized via sol-gel method. The synthesized TiO2 nanoparticles were then immobilized on ordinary sand for adsorption studies. Adsorption isotherms were conducted on the synthesized nanoparticles as well as the sand coated with TiO2 nanoparticles under varying conditions of air and light, namely, the air-sunlight (A-SL), air-light (AL), air-dark (AD) and nitrogen-dark (ND). X-Ray diffraction (XRD) analysis showed that the pure and the iron-doped TiO2 nanoparticles were in 100% anatase crystalline phase with crystal sizes of 108 and 65 nm, respectively.Adsorption of arsenic on the three adsorbents was non-linear that could be described by the Freundlich and Langmuir adsorption models. Iron doping enhanced the adsorption capacity of TiO2 nanoparticle by arresting its grain growth and making it visible light responsive resulting in a higher affinity for arsenic. Similarly, the arsenic removal by adsorption on the sand coated with TiO2 nanoparticles was the highest among the three types of sand used. In all cases, As(V) adsorbed more compared with As(III). Solution pH appeared to be the most important factor in controlling the amount of arsenic adsorbed.  相似文献   
353.
This work explores the feasibility of Jerusalem artichoke stem (JAS), an agricultural waste, as an alternative precursor for fabrication of mesoporous activated carbon (MAC) via conventional ZnCl2 activation. The as-prepared JAS-MACs were characterized by thermogravimetric, nitrogen gas adsorption isotherm and high resolution scanning electron microscopy analysis. The interacting effects of chemical dosage, activation temperature and time on the mesoporosity, mesopore volume and carbon yield were investigated, and further optimized by response surface methodology (RSM). The Brunauer-Emmett-Teller surface area, mesoporosity and mesopore volume of the JAS-MAC prepared under optimum condition were identified to be 1631 m2·g-1, 90.16% and 1.11 cm3·g-1, respectively. Compared with commercial activated carbons, this carbon exhibited a comparable monolayer adsorption capacity of 374.5 mg·g-1 for Methylene Blue dye. The findings suggest that RSM could be an effective approach for optimizing the pore structure of fabricated activated carbons.  相似文献   
354.
A novel hybrid material, Cu-PAA/MWCNTs (copper nanoparticles deposited multiwalled carbon nanotubes with poly (acrylic acid) as dispersant, was prepared and expected to obtain a more effective and well-dispersed disinfection material for water treatment. X-ray energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), the X-ray fluorescence (XRF), X-ray photoelectron spectra (XPS), Fourier transform infrared spectra (FT-IR), Raman spectroscopy, and thermal gravimetric analyzer (TGA) were used to characterize the Cu-PAA/MWCNTs. Escherichia coli (E. coil) was employed as the target bacteria. The cell viability determination and fluorescence imaging results demonstrated that Cu-PAA/MWCNTs possessed strong antimicrobial ability on E. coil. The deposited Cu was suggested to play an important role in the antimicrobial action of Cu-PAA/MWCNTs.  相似文献   
355.
The widespread production and use of zinc oxide nanoparticles (ZnO-NPs) in recent years have posed potential threat to the ecosystem. This study aimed to investigate the ecotoxicological effect of ZnO-NPs on soil microorganisms using laboratory microcosm test. Respiration, ammonification, dehydrogenase (DH) activity, and fluorescent diacetate hydrolase (FDAH) activity were used as ecotoxicological parameters. The results showed that in the neutral soil treated with 1 mg ZnO-NPs per g soil (fresh, neutral), ammonification was significantly inhibited during the study period of three months, but the inhibition rate decreased over increasing time. Inhibition in respiration was observed in the first month of the test. In various ZnO-NPs treatments (1 mg, 5 mg, and 10 mg ZnO-NPs per g soil), DH activity and FDAH activity were inhibited during the study period of one month. For both enzyme activities, there were positive dose–response relationships between the concentration of ZnO-NPs and the inhibition rates, but the curves changed over time due to changes of ZnO-NPs toxicity. Soil type affected the toxicity of ZnO-NPs in soil. The toxicity was highest in the acid soil, followed by the neutral soil. The toxicity was relatively low in the alkaline soil. The toxicity was not accounted for by the Zn2+ released from the ZnO-NPs. Direct interaction of ZnO-NPs with biologic targets might be one of the reasons. The adverse effect of ZnO-NPs on soil microorganisms in neutral and acid soils is worthy of attention.  相似文献   
356.
如今释放到水体环境中的工程纳米颗粒(ENP)数量与日俱增。为确保生态健康,需要进行相关的风险评估。本文综述了金属基ENP与水生高等植物之间的相互作用,找到了信息缺口并提出对未来研究的构想,为在该领域内的进一步探索提供了基础。本文讨论集中在以下3点:1. ENP的生物利用性;2. 生物对ENP的摄取、消化、转移以及生物累积;3. ENP对水生高等植物的毒性效果。由于ENP自身特性所带来的影响不明确以及水质状况记载情况不佳,ENP的摄取及相关动力学方面存在着很大的信息差距。分解似乎是驱动ENP生物累积的一种关键机制,然而纳米颗粒却常常被一些有着极少内化作用的植物的表面所吸收。然而,关于ENP在植物内的内化作用鲜有记载,因此纳米颗粒的内化作用对于生物累积及毒性的影响尚不明确。即使金属基ENP的纳米毒性已被报道,分解依然被认为是其毒性的主要机制。为推动该领域内的研究发展,未来的研究需结合ENP自身特性的影响、水体的理化参数以及它们之间的相互作用。相互作用对于ENP的生物利用性和对水生高等植物健康的风险都有重要影响。为了快速追踪类似数据的产生,我们建议测试方案趋向一致化。
精选自Melusi Thwala, Stephen J. Klaine, Ndeke Musee. Interactions of metal-based engineered nanoparticles with aquatic higher plants: a review of the state of current knowledge. Environmental Toxicology and Chemistry: Volume 35, Issue 7, pages 1677–1694, July 2016. DOI: 10.1002/etc.3364
详情请见http://onlinelibrary.wiley.com/doi/10.1002/etc.3364/full
  相似文献   
357.
The increased production and commercial use of nanoparticles (NPs), combined with a lack of regulation regarding their disposal, may result in the unwanted introduction of NPs to soils. In this study, the toxicity on soil enzyme activity and growth of Cucumis sativus treated with Zn or ZnO NPs was evaluated in pot soils. Specifically, C. sativus was cultivated in soils treated with Zn NPs, ZnO NPs or Zn2+ for eight weeks, after which the treatment effects on biomass and bioaccumulation were evaluated. In addition, the treatment effects on soil dehydrogenase, β -glucosidase and acid phosphatase were investigated. Soil enzyme activities were influenced by all treatments, with an especially large decrease in dehydrogenase activity in response to Zn2+ treatment. Biomass and root length also decreased in response to Zn2+ treatment. Finally, the Zn contents of C. sativus were much lower in the Zn NP and ZnO NP treatment groups than in the Zn2+ treatment group. Therefore, toxicity on soil microbial activity may have a greater influence than phytotoxicity due to immobilisation and aggregation of NPs in the soil.  相似文献   
358.
359.
A spectrophotometric procedure for the anionic diazo dye Congo red was proposed based on nanosilver catalyzed oxidation by potassium iodate in a hydrochloric acid medium. The calibration graph is linear for 0.8–240?mg?L?1, and the detection limit is 0.6?mg?L?1. Most foreign ions do not interfere with the determination, except for Cu(II), Fe(III), and Cr(VI). The interferences of Cu(II) and Fe(III) could be eliminated by masking with ethylene diamine tetraacetate, and that of Cr(VI) by reducing to Cr(III) with ascorbic acid. The typical features of this procedure are that it is sensitive for Congo red, and the determination could be carried out at room temperature. It had been used for the determination of Congo red in the Ganjnameh river water sample.  相似文献   
360.
In this investigation, Fe3O4 magnetic nanoparticles (MNPs) were prepared by the alkalinization of an aqueous medium containing ferrous sulfate and ferric chloride. In the next step, a Fe3O4–AgCl magnetic nanocomposite was fabricated by the drop-by-drop addition of silver nitrate solution into a NaCl solution containing Fe3O4 MNPs. All prepared nanoparticles were characterized by transition electron microscopy (TEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). Both particle types varied in size from 2.5 to 20?nm, with an average size of 7.5?nm for Fe3O4 MNPs and 12.5?nm for Fe3O4–AgCl nanocomposites. The antibacterial effect of the Fe3O4 MNPs and fabricated Fe3O4–AgCl nanocomposites against Escherichia coli (ATCC 35218) were investigated by conventional serial agar dilution method using the Müller–Hinton Agar medium. The minimum inhibitory concentration was 4?mg?mL?1 for Fe3O4 MNPs and 2?mg?mL?1 for the Fe3O4–AgCl magnetic nanocomposites. Time-kill course assays showed that the Fe3O4–AgCl magnetic nanocomposites successfully killed all inoculated bacterial cells during an exposure time of 60?min. The antibacterial activity of recycled Fe3O4–AgCl magnetic nanocomposites over four 60?min cycles of antibacterial treatment was further tested against E. coli by the colony-forming unit (CFU) method. The antibacterial efficiency of the nanocomposites was constant over two cycles of antibacterial testing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号