首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5140篇
  免费   684篇
  国内免费   2586篇
安全科学   252篇
废物处理   362篇
环保管理   680篇
综合类   4560篇
基础理论   833篇
环境理论   7篇
污染及防治   961篇
评价与监测   275篇
社会与环境   463篇
灾害及防治   17篇
  2024年   59篇
  2023年   195篇
  2022年   297篇
  2021年   296篇
  2020年   246篇
  2019年   270篇
  2018年   299篇
  2017年   320篇
  2016年   366篇
  2015年   440篇
  2014年   408篇
  2013年   636篇
  2012年   661篇
  2011年   649篇
  2010年   389篇
  2009年   365篇
  2008年   286篇
  2007年   354篇
  2006年   393篇
  2005年   231篇
  2004年   167篇
  2003年   178篇
  2002年   142篇
  2001年   128篇
  2000年   124篇
  1999年   98篇
  1998年   73篇
  1997年   60篇
  1996年   68篇
  1995年   36篇
  1994年   42篇
  1993年   27篇
  1992年   24篇
  1991年   20篇
  1990年   14篇
  1989年   11篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1983年   2篇
  1982年   4篇
  1981年   6篇
  1980年   3篇
  1979年   4篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1972年   3篇
  1968年   1篇
排序方式: 共有8410条查询结果,搜索用时 15 毫秒
111.
Forests and soils are a major sink of carbon, and land use changes can affect the magnitude of above ground and below ground carbon stores and the net flux of carbon between the land and the atmosphere. Studies on methods for examining the future consequences of changes in patterns of land use change and carbon flux gains importance, as they provide different options for CO2 mitigation strategies. In this study, a simulation approach combining Markov chain processes and carbon pools for forests and soils has been implemented to study the carbon flows over a period of time. Markov chains have been computed by converting the land use change and forestry data of India from 1997 to 1999 into a matrix of conditional probabilities reflecting the changes from one class at time t to another class time t+1. Results from Markov modeling suggested Indian forests as a potential sink for 0.94 Gt carbon, with an increase in dense forest area of about 75.93 Mha and decrease of about 3.4 Mha and 5.0 Mha in open and scrub forests, if similar land use changes that occurred during 1997–1999 would continue. The limiting probabilities suggested 34.27 percent as dense forest, 6.90 as open forest, 0.4 percent mangrove forest, 0.1 percent scrub and 58 percent as non-forest area. Although Indian forests are found to be a potential carbon sink, analysis of results from transition probabilities for different years till 2050 suggests that, the forests will continue to be a source of about 20.59 MtC to the atmosphere. The implications of these results in the context of increasing anthropogenic pressure on open and scrub forests and their contribution to carbon source from land use change and forestry sector are discussed. Some of the mitigation aspects to reduce greenhouse gas emissions from land use change and forestry sector in India are also reviewed in the study.  相似文献   
112.
小型炭素焙烧炉沥青烟气净化技术初探   总被引:5,自引:2,他引:5  
阐述了颗粒层吸附技术在小型炭素焙烧沥青烟气净化中的应用。  相似文献   
113.
Subsidence is a primary factor governing marsh deterioration in Mississippi River deltaic plain coastal marshes. Marsh surface-water level relationships are maintained primarily through soil organic matter accumulation and inorganic sediment input. In this study we examined the role of soil organic matter accumulation in maintaining marsh elevation in a brackish Spartina patens marsh. Measured rates of soil organic accumulation were compared to plant biomass production and soil respiration (carbon dioxide and methane emission) at the study sites. The study demonstrated the importance of plant biomass production to soil organic carbon accumulation in maintaining viable Spartina patens marshes in sediment-deficient coastal environments. The role of Mississippi River freshwater reintroduction in maintaining conditions for organic accretion is discussed.  相似文献   
114.
ABSTRACT: Ground water contamination by excess nitrate leaching in row‐crop fields is an important issue in intensive agricultural areas of the United States and abroad. Giant cane and forest riparian buffer zones were monitored to determine each cover type's ability to reduce ground water nitrate concentrations. Ground water was sampled at varying distances from the field edge to determine an effective width for maximum nitrate attenuation. Ground water samples were analyzed for nitrate concentrations as well as chloride concentrations, which were used as a conservative ion to assess dilution or concentration effects within the riparian zone. Significant nitrate reductions occurred in both the cane and the forest riparian buffer zones within the first 3.3 m, a relatively narrow width. In this first 3.3 m, the cane and forest buffer reduced ground water nitrate levels by 90 percent and 61 percent, respectively. Approximately 40 percent of the observed 99 percent nitrate reduction over the 10 m cane buffer could be attributed to dilution by upwelling ground water. Neither ground water dilution nor concentration was observed in the forest buffer. The ground water nitrate attenuation capabilities of the cane and forest riparian zones were not statistically different. During the spring, both plant assimilation and denitrification were probably important nitrate loss mechanisms, while in the summer nitrate was more likely lost via denitrification since the water table dropped below the rooting zone.  相似文献   
115.
ABSTRACT: A study was conducted to determine the effects of mining and reclaiming originally undisturbed watersheds on surface-water hydrology in three small experimental watersheds in Ohio. Approximately six years of data were collected at each site, with differing lengths of premining (Phase 1), mining and reclamation (Phase 2), and post-reclamation (Phase 3) periods. Mining and reclamation activities showed no consistent pattern iii base-flow, and caused slightly more frequent higher daily flow volumes. Phase 2 activities can cause reductions in seasonal variation in double mass curves compared with Phase 1. Restoration of seasonal variations was noticeably apparent at one site during Phase 3. The responses of the watersheds to rainfall intensities causing larger peak flow rates generally decreased due to mining and reclamation, but tended to exceed responses observed in Phase 1 during Phase 3. Natural Resources Conservation Service (NRCS) curve numbers increased due to mining and reclamation (Phase 2), ranging from 83 to 91. During Phase 3, curve numbers remained approximately constant from Phase 2, ranging from 87 to 91.  相似文献   
116.
范广裕 《化工环保》1996,16(3):156-161
以球形活性炭为吸附剂,用吸附法处理黑索金(RDX)废水,出水能够达到国家排放标准,球形活性炭的动态饱和吸附量为0.123-0.140g/g,吸附带长为2m。吸附饱和的球形活性炭,可用碱液以复再生。笔者还提出了数学模型,导出了处理实验数据公式,此公式可推广应用于同类吸附实验数据处理。  相似文献   
117.
闫光绪  张洪林 《化工环保》1996,16(5):263-268
对抚顺石化公司化工塑料厂苯乙烯废水活性炭吸附装置的预处理设施、活性炭吸附及再生性能进行了评价,分析了出水水质超标的主要原因,用混凝沉淀-砂滤流程改进了原处理工艺,使出水水质得到了显著改善。  相似文献   
118.
ABSTRACT: Streamflow for 67 years was simulated for Coon Creek at Coon Valley, Wisconsin, for three conditions in the drainage basin: (1) conditions in the 1930s; (2) conditions in the 1970s, excluding flood-detention reservoirs; and (3) conditions in the 1970s, including flood-detention reservoirs. These simulations showed that the changes in agricultural practices over 40 years (1940–80) reduced the 100-year flood by 53 percent (from 38,900 to 18,300 cubic feet per second). The flood-detention reservoirs reduced the 100-year flood by an additional 17 percent (to 15,100 cubic feet per second). The simulation was accomplished by calibrating a precipitation-runoff model to observed rainfall and runoff during two separate periods (1934–40 and 1978–81). Comparisons of model simulations showed that differences between the model calibrations for the two periods were statistically significant at the 95 percent confidence level.  相似文献   
119.
活性炭膜处理工业废水的试验研究   总被引:2,自引:0,他引:2  
将活性炭膜与常规弹性材料同时作为生物接触氧化处理工艺的填料,分别加装在相同条件的两套接触氧化池中,采用生物接触氧化处理工艺,在同样的条件下处理工业废水,经过对试验数据的对比分析得出:以活性炭膜为填料,处理废水的能力更强,净化效果更好。  相似文献   
120.
低温烟气脱氮活性炭基催化剂   总被引:3,自引:0,他引:3  
梁锦平  华坚  尹华强  刘中正 《四川环境》2006,25(2):99-104,110
活性炭基催化剂是低温烟气脱氮的优良催化剂。本文探讨了活性炭基催化荆的低温脱氮机理,分析了催化荆性能的影响因素,比较了各种催化荆的脱氮机理和性能,在此基础上指出了今后的研究方向。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号