首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1112篇
  免费   124篇
  国内免费   544篇
安全科学   92篇
废物处理   54篇
环保管理   122篇
综合类   875篇
基础理论   245篇
污染及防治   233篇
评价与监测   136篇
社会与环境   19篇
灾害及防治   4篇
  2024年   3篇
  2023年   28篇
  2022年   35篇
  2021年   46篇
  2020年   47篇
  2019年   69篇
  2018年   43篇
  2017年   56篇
  2016年   69篇
  2015年   71篇
  2014年   70篇
  2013年   109篇
  2012年   123篇
  2011年   117篇
  2010年   96篇
  2009年   105篇
  2008年   83篇
  2007年   96篇
  2006年   87篇
  2005年   71篇
  2004年   54篇
  2003年   57篇
  2002年   30篇
  2001年   45篇
  2000年   41篇
  1999年   31篇
  1998年   17篇
  1997年   20篇
  1996年   18篇
  1995年   10篇
  1994年   9篇
  1993年   6篇
  1991年   8篇
  1990年   3篇
  1989年   3篇
  1988年   2篇
  1985年   1篇
  1979年   1篇
排序方式: 共有1780条查询结果,搜索用时 421 毫秒
741.
含单环芳香烃废水的超声降解实验研究   总被引:6,自引:0,他引:6  
陆永生  沈虹 《上海环境科学》1999,18(11):494-496
利用超声波译水体中的单环芳香烃降解进行探索性试验。结果表明,超声辐照70min,含单环芳香烃废水的降解规律基本遵循一级反应动力学;超声辐照90min,初始浓度为2.295~14.57mg/L的含苯废水,却除率可达到99%以上。  相似文献   
742.
介绍了高硫石油焦燃料燃烧时的污染物的排放特性。试验结果显示 :通过添加石灰石、控制其燃烧温度的方法 ,可使其燃烧时的尾部烟气成份中的SO2 和NOx 达到国家环境排放标准。从而为高硫石油焦作为一种燃料应用于循环流化床锅炉提供了必要的实验数据。  相似文献   
743.
Rost H  Loibner AP  Hasinger M  Braun R  Szolar OH 《Chemosphere》2002,49(10):1239-1246
The stability of historically polycyclic aromatic hydrocarbon (PAH)-contaminated soils during cold storage was investigated. Samples from two former manufactured gas plants exhibited quantitative recoveries of PAHs over the whole period of sample holding at 4 °C in the dark (8–10 months), whereas significant losses of PAHs were observed for soils received from a former railroad sleeper preservation plant with low molecular weight compounds being notably more affected compared to heavier PAHs. Already after 2 weeks of holding time, 3-ring PAHs in one of theses samples were down to 29–73% of the initial concentration and significant losses were observed for up to 5-ring compounds. Dissipation of PAHs was found to be predominantly due to aerobic microbial metabolism since sodium azide poisoned samples showed quantitative recoveries for all PAHs over the entire storage time of 3 months. A similar stabilizing effect was observed for freezing at −20 °C as means of preservation. Except for acenaphthene, no significant loss for any of the PAHs was observed over 6 weeks of holding time. Eventually, selected chemical, physical, and biological parameters of two soils were investigated and identified as potential indicators for the stability of PAH-contaminated soil samples.  相似文献   
744.
This paper presents results of a numerical investigation of soil vapor extraction (SVE) systems at the laboratory scale. The SVE technique is used to remove volatile chlorinated hydrocarbons (VCHC) from the water-unsaturated soil zone. The developed numerical model solves equations of flow, transport and interfacial mass transfer regarding an isothermal n-component and three-phase system. The mathematical model is based on a simple pore network and phase distribution model and designed to be scaled by a characteristic length. All mathematical expressions are structured into VCHC specific and VCHC non-specific parameters. Furthermore, indicators are introduced that help to separate thermodynamic equilibrium from thermodynamic non-equilibrium domains and to determine the controlling physical parameters. For numerical solution, the system of partial differential equations is discretized by a finite volume method and an implicit Euler time stepping scheme. Computational effort is reduced notably through techniques that enable spatial and temporal adaptivity, through a standard multigrid method as well as through a problem-oriented sparse-matrix storage concept. Computations are carried out in two dimensions regarding the laboratory experiment of Fischer et al. [Water Resour. Res. 32 (12) 1996 3413]. By varying the characteristic length scale of the pore network and phase distribution model, it is shown that the experimental gas phase concentrations cannot be explained only by the volatility and diffusivity of the VCHC. The computational results suggest a sorption process whose significance grows with the aqueous activity of the less or non-polar organic compounds.  相似文献   
745.
Background Phytoremediation is a promising technology for the cleanup of polluted environments. The technology has so far been used mainly to remove toxic heavy metals from contaminated soil, but there is a growing interest in broadening its applications to remove/degrade organic pollutants in the environment. Both plants and soil microorganisms have certain limitations with respect to their individual abilities to remove/breakdown organic compounds. A synergistic action by both rhizosphere microorganisms that leads to increased availability of hydrophobic compounds, and plants that leads to their removal and/or degradation, may overcome many of the limitations, and thus provide a useful basis for enhancing remediation of contaminated environments.Main Features The review of literature presented in this article provides an insight to the nature of plant-microbial interactions in the rhizosphere, with a focus on those processes that are relevant to the breakdown and/or removal of organic pollutants. Due consideration has been given to identify opportunities for utilising the plant-microbial synergy in the rhizosphere to enhance remediation of contaminated environments.Results and Discussion The literature review has highlighted the existence of a synergistic interaction between plants and microbial communities in the rhizosphere. This interaction benefits both microorganisms through provision of nutrients by root exudates, and plants through enhanced nutrient uptake and reduced toxicity of soil contaminants. The ability of the plant-microbial interaction to tackle some of the most recalcitrant organic chemicals is of particular interest with regard to enhancing and extending the scope of remediation technologies.Conclusions Plant-microbial interactions in the rhizosphere offer very useful means for remediating environments contaminated with recalcitrant organic compounds.Outlook A better knowledge of plant-microbial interactions will provide a basis for improving the efficacy of biological remediations. Further research is, however, needed to investigate different feedback mechanisms that select and regulate microbial activity in the rhizosphere.  相似文献   
746.
Control of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in emissions and thermal residues from incinerators has been a cause of public concern for more than one decade. Recently, several studies showed that other persistent organic pollutants (POPs) such as coplanar polychlorinated biphenyls (co-PCBs) also have dioxin-like activity and are released from incinerators. Therefore, the present study was aimed at making a risk assessment about dioxin-like activity in extracts of thermal waste residues (e.g. combustion gas; fly ash, slag) from incineration and melting processes in Germany and Japan. For this purpose, polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), coplanar polychlorinated biphenyls (co-PCBs), polychlorinated naphthalenes (PCNs) and polyaromatic hydrocarbons (PAHs) were analyzed by chemical analysis. Additionally, 2, 3, 7, 8-TCDD equivalents (EROD-TEQs) were determined by in vitro Micro-EROD bioassay using rat H4IIE hepatoma cells. EROD-TEQs could be correlated to I-TEQ values (from PCDD/Fs/co-PCBs) analyzed by chemical analysis resulting in a maximal sixfold higher estimate. Our study indicates minor influences of co-PCBs, PAHs and PCNs to the sum of dioxin-like toxicity in the extracts of thermal waste residues as determined here. Furthermore, we showed that the levels of dioxins and co-PCBs contained in slag from melting processes and bottom ashes from incineration processes were lower by 1-2 orders of magnitude than that in fly ash.  相似文献   
747.
The natural attenuation of polyaromatic hydrocarbons (PAHs) in the vadose zone of a naturally revegetated former industrial sludge basin (0.45 ha) was examined. This was accomplished by comparing the concentration of 16 PAH contaminants present in sludge collected below the root zone of plants with contaminants present at 3 shallower depths within the root zone. Chemical analysis of 240 samples from 60 cores showed the average concentration of total and individual PAHs in the 0-30 cm, 30-60 cm, and bottom of the root zone strata were approximately 10, 20, and 50%, respectively, of the 16, 800 ppm average total PAH concentration in deep non-rooted sludge. Statistically significant differences in average PAH concentrations were observed between each strata studied and the non-rooted sludge except for the concentrations of acenaphthene and chrysene present at the bottom of the root zone in comparison to sludge values. The rooting depth of the vegetation growing in the basin was dependent on both vegetation type and plant age. Average rooting depths for trees, forbs (herbaceous non-grasses), and grasses were 90, 60, and 50 cm, respectively. The deepest root systems observed (100-120 cm) were associated with the oldest (12-14 year-old) mulberry trees. Examination of root systems and PAH concentrations at numerous locations and depths within the basin indicated that plant roots and their microbially active rhizospheres fostered PAH disappearance; including water insoluble, low volatility compounds, i.e. benzo(a)pyrene and benzo(ghi)perylene. The reduced concentration of PAHs in the upper strata of this revegetated former sludge basin indicated that natural attenuation had occurred. This observation supports the concept that through appropriate planting and management practices (phytoremediation) it will be possible to accelerate, maximize, and sustain natural processes, whereby even the most recalcitrant PAH contaminants (i.e. benzo(a)pyrene) can be remediated over time.  相似文献   
748.
利用复合酵母菌系统处理含油污泥   总被引:3,自引:0,他引:3  
利用筛选得到的10株酵母菌组成复合酵母菌系统,并将该复合菌系统接种到泥浆反应器中对模拟油泥样品进行了处理。在对反应器进行优化的基础上,比较了复合酵母菌体系和经驯化的活性污泥体系对模拟风化油泥的处理效果,发现复合酵母菌在反应速度和油去除率上都优于活性污泥。利用GC—MS对复合酵母菌处理体亲中主要脂肪烃组分的变化进行了分析,结果表明原油组分中脂肪烃部分在处理8d后基本被完全降解。  相似文献   
749.
A two-step analytical method is developed for the isolation and characterization of polycyclic aromatic hydrocarbons (PAHs) in crude oil contaminated soil. In the first step, those crude oil components were isolated which are easily mobilized with water from the contaminated soil (determination of groundwater pollution potential). In the second step, the fraction containing the remaining crude oil compounds was extracted using toluene. After the cleanup of the fractions, both fractions were analyzed using high-performance liquid chromatography (HPLC). The HPLC of the toluene extracted fraction shows that along with the sixteen priority pollutants from the US-EPA list, many other polycyclic aromatic hydrocarbons (PAHs) are present as well. It is evident from the chromatograms that a significant amount of PAHs are present as is also the case in the fractions eluted by water. The described method allows the determination of total organic pollutants from crude oil, some of them being potential groundwater contaminants. The major part of the total pollutants could not be mobilized by water and therefore remains in the soil, which was extracted in the second step.  相似文献   
750.
油品储运系统的蒸发损耗及油气回收方案   总被引:3,自引:0,他引:3  
油品储运过程中的蒸发损耗带来了严重的危害。利用油气回收技术作为主要的降耗措施已得到重视和推广应用。通过对储运过程中油品蒸发损耗及各类油气回收装置特点的分析,阐述了不同实际生产条件下的油气回收技术的选用方案。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号