首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   299篇
  免费   61篇
  国内免费   302篇
安全科学   32篇
废物处理   25篇
环保管理   17篇
综合类   422篇
基础理论   73篇
污染及防治   77篇
评价与监测   13篇
社会与环境   1篇
灾害及防治   2篇
  2024年   1篇
  2023年   9篇
  2022年   13篇
  2021年   18篇
  2020年   25篇
  2019年   21篇
  2018年   22篇
  2017年   16篇
  2016年   32篇
  2015年   27篇
  2014年   28篇
  2013年   57篇
  2012年   45篇
  2011年   34篇
  2010年   31篇
  2009年   37篇
  2008年   22篇
  2007年   36篇
  2006年   23篇
  2005年   18篇
  2004年   24篇
  2003年   14篇
  2002年   22篇
  2001年   11篇
  2000年   11篇
  1999年   8篇
  1998年   10篇
  1997年   8篇
  1996年   9篇
  1995年   6篇
  1994年   2篇
  1993年   4篇
  1992年   6篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   3篇
  1986年   1篇
排序方式: 共有662条查询结果,搜索用时 15 毫秒
51.
板材类生物质燃烧及动力学特性热重研究   总被引:3,自引:0,他引:3  
蒲舸  雷强  徐鹏 《环境工程学报》2012,6(7):2431-2436
采用非等温升温法研究了4种板材类生物质在空气气氛下的燃烧特性和动力学特性。通过对TG、DTG等曲线的分析,发现4种板材燃烧过程均可分成3个阶段,即水分蒸发阶段、挥发份析出(或燃烧)阶段和固定碳燃烧阶段。综合燃烧特性:松木集成材>纤维密度板>夹芯胶合板>刨花板。4种板材均具有良好的燃烧特性。4种生物质燃烧均存在1个吸热峰和2个放热峰,分别与挥发分析出峰、挥发分燃烧、固定碳燃烧对应。采用Fridman法和Fridman-Carroll法分别对4种板材的动力学参数进行了计算,2种方法得出的结果符合较好。分析得出:由于生物质燃烧与环境换热、挥发分析出吸热、固定碳燃烧放热等因素作用,4种生物质的表观活化能高温区均低于低温区。动力学计算结果表明:松木集成材平均表观活化能最低,燃烧反应能较容易进行。  相似文献   
52.
Fenton法处理垃圾渗滤液的参数优化及反应动力学模型   总被引:1,自引:0,他引:1  
采用Fenton法处理垃圾渗滤液,研究反应时间、初始浓度、pH、Fenton试剂用量对垃圾渗滤液TOC去除率的影响。研究结果表明,最优反应条件是反应时间30 min,初始pH为3.0,初始[H2O2]0=7 310 mg/L,最佳[H2O2]/[Fe2+]摩尔比为5,反应温度为室温,此时渗滤液的TOC去除率达到70.3%。渗滤液矿化过程符合一级反应动力学,并建立了符合该渗滤液的反应动力学模型。  相似文献   
53.
采煤塌陷地积水对土壤氮素矿化过程的影响   总被引:1,自引:0,他引:1  
煤炭开采导致大面积的土地塌陷,使大量耕地出现常年积水或季节性积水,对塌陷地土壤氮素矿化过程产生一定影响。采集了某矿采煤塌陷地土壤样品,进行好气和淹水培养条件下间歇淋洗培养实验,研究了塌陷地积水对土壤氮素矿化过程的影响。经过62d的培养,40d左右氮素的矿化过程趋于稳定,淹水培养条件下土壤氮素最终累积矿化量为68.99mg/kg,约为好气培养条件的10倍,且淹水培养条件下土壤氮素矿化势可达69.472mg/kg,均矿化速率为5.210mg/(kg·d),说明淹水对土壤氮素矿化过程有显著的促进作用。将实验所得累积矿化量分别代入简单指数模型及双因子指数模型进行拟合,发现简单指数模型能有效模拟好气和淹水培养条件下土壤氮素矿化过程,并获得了2种培养条件下土壤氮素矿化过程的模型参数。  相似文献   
54.
结合Fenton氧化反应动力学模型研究了Fenton氧化水中间氯硝基苯(m-ClNB)的影响因素和降解机制.结果表明:(1)反应初始pH、H2O2浓度、Fe2+浓度、污染物初始浓度和反应温度对m-ClNB的降解均有明显影响.在反应初始pH为3.5、m-ClNB初始摩尔浓度为0.444mmol/L、H2O2摩尔浓度为21.55mmol/L、Fe2+摩尔浓度为0.054mmol/L、反应温度为(25土1)℃的条件下,m-ClNB的去除效果较好.(2)建立了Fenton氧化m-ClNB的准一级反应动力学模型,且m-ClNB的降解与该模型拟合良好.基于不同反应温度时的准一级反应速率常数(kap),得到了m-ClNB降解的阿累尼乌斯公式,且活化能为36.51kJ/mol.(3)气相色谱(GC)/质谱(MS)和高效液相色谱(HPLC)/MS分析表明,Fenton氧化m-ClNB的主要产物有4-氯-2-硝基苯酚及其同分异构体、羟基乙酸、草酸、丁二酸、丙二酸、6-氯己酸、乙醛酸、2,2-二羟基丙二酸和2-乙基丙二酸等.  相似文献   
55.
以吡啶,葡萄糖和邻苯二甲酸作为共代谢基质,研究了它们对芽孢杆菌Y_4降解异喹啉的影响。实验结果表明各降解过程均遵循二级反应动力学方程:-dS/dt=K2S2+K1S+K0。吡啶的加入会抑制异喹啉的降解,并且吡啶的浓度越高,抑制作用越明显。反应体系中葡萄糖的浓度为100-800mg/L时,葡萄糖的加入会促进异喹啉的降解,且葡萄糖浓度越大,异喹啉降解速率P越大,当葡萄糖的浓度为800mg/L时,其降解率速率P可由未加葡萄糖的0.1924h。上升为0.2255h-1。适宜浓度的邻苯二甲酸会对异喹啉的降解产生促进作用,邻苯二甲酸的浓度为50mg/L时,异喹啉的降解速率可由原来的0.1924h-1增加到0.2145h-1,邻苯二甲酸浓度过高反而会抑制异喹啉的降解。  相似文献   
56.
La在模拟水生态系统中的动力学行为   总被引:2,自引:0,他引:2  
采用140La放射示踪技术,研究了稀土元素镧(La)在模拟水生态系统各组分中的迁移分布规律.并建立了相应的数学模型.结果表明,La在模拟水生态系统各组分中的积累率大小依次为:金鱼藻>底泥>螺蛳>鱼,La在系统内的动态变化规律可用封闭分室模型来描述.  相似文献   
57.
大气光化学烟雾反应机理比较(Ⅰ)O3和NOx的比较   总被引:8,自引:0,他引:8  
在相同初始和排放条件下,对四种应用较广的光化学烟雾反应机理(CB4-99,RADM2,RACM,SAPRC99)进行了比较.研究发现对于O3,在低VOCs/NOx时,四种机理模拟结果相关较小,平均相对标准偏差为7%,在高VOCs/NOx时,平均相对标准偏差为26%,差距较大;对于NOx,多数情况下RACM和RADM2的模拟结果较高,CB4-99和SAPRC99的模拟值偏低,其原因主要来源于不同机理中O3的生成对NOx及VOCs的敏感性不同而造成的.在用模式模拟O3和NOx时,应特别注意机理不同而带来的模拟结果差异.  相似文献   
58.
美国光化学污染监测的经验与启示   总被引:1,自引:1,他引:0  
针对光化学污染的严峻形势,中国应尽快建立国家层面的光化学监测网络,完善光化学监测的技术体系与质量管理体系,为重点地区光化学污染防治工作提供监测数据支持。研究在总结美国光化学评估监测网络发展历程、运行及其监测目标、技术体系和质量管理体系的基础上,提出了明确光化学监测目标、制定优先监测VOCs名单、完善光化学监测技术体系和质量管理体系、建立光化学监测数据共享平台以及开展VOCs源解析等建设中国光化学监测网络的具体建议。  相似文献   
59.
采用CFD(计算流体力学)数值模拟的研究方法,使用动网格技术,分析简单光化学反应下车辆流动及不同来流风速对双车道三维街道峡谷内污染物传播特性的影响.结果表明,车辆移动改变了峡谷内气流结构,以及背风侧与迎风侧活性污染物浓度分布的相对大小,有利于污染物在峡谷中的传播扩散;来流风使机动车尾气向建筑背风侧汇聚,并随着风速增加而加强,对近迎风侧车道车辆尾气淹没射流的影响比近背风侧车道大.在车辆移动与来流风的综合作用下,污染物的扩散能力得到显著增强.  相似文献   
60.
根据北京市环境保护监测中心发布的PM2.5和O3小时质量浓度及气象、卫星遥感数据,分析了2013年7月2日至10日北京典型PM2.5及O3重污染过程的质量浓度特征及在大气边界层过程各个阶段的质量浓度演变.结果表明,北京夏季O3质量浓度先于PM2.5达到峰值,而天气型演变是导致这一现象的主要原因.具体过程为:1)重污染初始阶段,高压天气型利于前体物积累,PM2.5及O3质量浓度升高;2)在反气旋中部,由于各种污染物质量浓度较低,对大气紫外波段辐射的吸收较弱,导致该阶段紫外辐射强,因而加快了O3生成的光化学反应,O3质量浓度最先达到峰值;3)在反气旋后部,随PM2.5质量浓度增加,辐射变弱,因此O3质量浓度增加速度下降,而受高压后部影响,区域内PM2.5经东南风输送通道进入北京,导致北京PM2.5质量浓度相继达到峰值;4)在重污染清除阶段,在北方反气旋前部的冷锋清除作用下,PM2.5及O3质量浓度同时降低至谷值.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号