首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1073篇
  免费   137篇
  国内免费   889篇
安全科学   47篇
废物处理   44篇
环保管理   89篇
综合类   1331篇
基础理论   298篇
污染及防治   232篇
评价与监测   48篇
社会与环境   9篇
灾害及防治   1篇
  2024年   7篇
  2023年   26篇
  2022年   58篇
  2021年   71篇
  2020年   83篇
  2019年   85篇
  2018年   72篇
  2017年   67篇
  2016年   83篇
  2015年   82篇
  2014年   96篇
  2013年   144篇
  2012年   107篇
  2011年   142篇
  2010年   91篇
  2009年   129篇
  2008年   86篇
  2007年   102篇
  2006年   99篇
  2005年   69篇
  2004年   60篇
  2003年   65篇
  2002年   42篇
  2001年   34篇
  2000年   36篇
  1999年   38篇
  1998年   20篇
  1997年   19篇
  1996年   14篇
  1995年   23篇
  1994年   8篇
  1993年   14篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1987年   3篇
  1986年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有2099条查询结果,搜索用时 171 毫秒
711.
利用16S rRNA基因测序分类学技术,分别以北京市区2011及2012年不同月份的降水样品中细菌的基因组DNA为模板,通过克隆、测序构建基因组文库,研究了北京市大气降水中细菌的群落结构组成及多样性变化.系统发育分析结果表明,变形菌门(Proteobacteria) (α-,β-,γ-)是北京市降水样品中细菌的优势菌群(75.6%~100%),另外包括拟杆菌门(Bacteroidetes)、放线菌门(Actinobacteria)、异常球菌门(Deinococcus-Thermus)、蓝藻门(Cyanobacteria)、硝化螺菌门(Nitrospira)、厚壁菌门(Firmicutes)共7个主要门类的细菌,以及未定菌(TM7).多样性指数分析结果显示,不同的降水样品,细菌群落结构组成及多样性均存在着差异性,冬季12月份雪水样品细菌群落结构多样性明显高于其他季节的样品,细菌群落多样性(Shannon, H)特点是,冬季>秋季>夏季.  相似文献   
712.
不同时期条纹环沟藻可培养藻际细菌研究   总被引:1,自引:0,他引:1  
通过梯度稀释法分离出条纹环沟藻5个生长时期的可培养藻际细菌,利用基于单菌落16S rDNA V3区序列测定对细菌进行了分子分类鉴定,与GenBank上的相似菌株序列构建了邻接系统发育树并计算遗传距离,同时对不同时期的细菌进行了定量分析.结果表明,在分离培养出的32株细菌中,有12株不同种属细菌.12株细菌分属于a-变形菌纲(Alphaproteobacteria)、g-变形菌纲(Gammaproteobacteria)、拟杆菌门(Bacteroidetes)和放线菌门(Actinobacteria)4大细菌类群,在种类和数量上均以α-变形菌纲为主,其次为g-变形菌纲和拟杆菌门.每个生长时期可培养藻际细菌的种类数为5~8种,其中稳定生长期细菌种类数较为丰富,而在迟滞期和衰亡后期细菌种类较少.从各时期的细菌总数来看,对数生长期细菌数量最低,仅为2.83×106CFU/mL;在衰亡前期细菌数量最高,达到1.72×109CFU/mL;衰亡后期虽然细菌数量有所降低,但仍达到1.37×108CFU/mL.聚类分析和多维尺度分析结果显示,衰亡前期细菌群落结构与其它时期差异较大,而藻细胞快速生长阶段的对数生长期和稳定生长期菌落结构相近.衰亡前期特异性菌株鲍氏不动杆菌(Acinetobacter baumannii)的大量出现,可能与藻类迅速进入衰亡阶段有关;而各个时期均出现的一株麦氏交替单胞菌(Alteromonas macleodii)可能对条纹环沟藻的种群竞争起作用.在条纹环沟藻不同生长时期藻际细菌的种类与数量有所差异,藻际细菌的群落结构可能对条纹环沟藻的生长、种群竞争以及赤潮的生消具有重要作用.  相似文献   
713.
COD/N at low ratios (0–0.82) improved N removals of CANON. CANON performance decreased after COD/N up to 0.82. The relative abundance of AOB decreased continuously with increasing COD/N. AOB outcompeted at a high COD load led to CANON failure. The relative abundance of AnAOB decreased and increased with increasing COD/N. The effects of increasing COD/N on nitrogen removal performance and microbial structure were investigated in a SBR adopting a completely autotrophic nitrogen removal over nitrite process with a continuous aeration mode (DO at approximately 0.15–0.2 mg/L). As the COD/N increased from 0.1 to≤0.59, the nitrogen removal efficiency (NRE) increased from 88.7% to 95.5%; while at COD/N ratios of 0.59–0.82, the NRE remained at 90.7%–95.5%. As the COD/N increased from 0.82 to 1.07, the NRE decreased continuously until reaching 60.1%. Nitrosomonas sp. (AOB) and Candidatus Jettenia (anammox bacteria) were the main functional genera in the SBR. As the COD/N increased from 0.10 to 1.07, the relative abundance of Nitrosomonas decreased from 13.4% to 2.0%, while that of Candidatus Jettenia decreased from 35% to 9.9% with COD/N<0.82 then increased to 45.4% at a COD/N of 1.07. Aerobic heterotrophic bacteria outcompeted AOB at high COD loadings (650 mg/L) because of oxygen competition, which ultimately led to deteriorated nitrogen removal performance.  相似文献   
714.
养殖水体复合功能菌的分离及其性能   总被引:1,自引:0,他引:1  
针对养殖水体中因氨态氮、硫化氢和小分子有机酸富营养化引起的污染问题,分离筛选出硝化细菌、反硝化细菌、光合细菌、硫化细菌和生物絮凝菌等具有不同生理功能的污染物治理菌株,经优化配伍制备出性能优良的复合功能菌,结果表明:硝化细菌对氨态氮的去除率达97.8%,亚硝态氮的去除率达95.7%,反硝化细菌对硝态氮的去除率为96.4%,光合细菌和硫化细菌对硫化氢的去除率为55%,微生物絮凝菌的絮凝效率为83%;复合功能菌对CODCr、NH4+-N,总氮、硫化物的去除率分别可达94.3%,89.6%,88.7%和71.3%。  相似文献   
715.
Less than 50 mg/L nitrobenzene brought little effect on anaerobic sulfate reduction. Kinetics of sulfate reduction under different nitrobenzene contents was studied. Increased nitrobenzene contents greatly changed the bacterial community structure. Genus Desulfovibrio played the key role in anaerobic sulfate reduction process. Nitrobenzene (NB) is frequently found in wastewaters containing sulfate and may affect biological sulfate reduction process, but information is limited on the responses of sulfate reduction efficiency and microbial community to the increased NB contents. In this study, a laboratory-scale expanded granular sludge bed reactor was operated continuously to treat high-sulfate organic wastewater with increased NB contents. Results successfully demonstrated that the presence of more than 50 mg/L NB depressed sulfate reduction and such inhibition was partly reversible. Bath experiments showed that the maximum specific desulfuration activity (SDA) decreased from 135.80 mg SO42?/gVSS/d to 30.78 mg SO42?/gVSS/d when the NB contents increased from none to 400 mg/L. High-throughput sequencing showed that NB also greatly affected bacterial community structure. Bacteroidetes dominated in the bioreactor. The abundance of Proteobacteria increased with NB addition while Firmicutes presented an opposite trend. Proteobacteria gradually replaced Firmicutes for the dominance in response to the increase of influent NB concentrations. The genus Desulfovibrio was the dominant sulfate-reducing bacteria (SRB) with absence or presence of NB, but was inhibited under high content of NB. The results provided better understanding for the biological sulfate reduction under NB stress.  相似文献   
716.
Antibiotic-resistant bacteria and antibiotic resistance genes are in water bodies. UV/chlorination method is better to remove ARGs than UV or chlorination alone. Research on UV/hydrogen peroxide to eliminate ARGs is forthcoming. UV-based photocatalytic processes are effective to degrade ARGs. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been recognized as one of the biggest public health issues of the 21st century. Both ARB and ARGs have been determined in water after treatment with conventional disinfectants. Ultraviolet (UV) technology has been seen growth in application to disinfect the water. However, UV method alone is not adequate to degrade ARGs in water. Researchers are investigating the combination of UV with other oxidants (chlorine, hydrogen peroxide (H2O2), peroxymonosulfate (PMS), and photocatalysts) to harness the high reactivity of produced reactive species (Clž·, ClOž·ž, Clž2·ž, žž·OH, and SOž4ž·€) in such processes with constituents of cell (e.g., deoxyribonucleic acid (DNA) and its components) in order to increase the degradation efficiency of ARGs. This paper briefly reviews the current status of different UV-based treatments (UV/chlorination, UV/H2O2, UV/PMS, and UV-photocatalysis) to degrade ARGs and to control horizontal gene transfer (HGT) in water. The review also provides discussion on the mechanism of degradation of ARGs and application of q-PCR and gel electrophoresis to obtain insights of the fate of ARGs during UV-based treatment processes.  相似文献   
717.
•Phages can be better indicators of enteric viruses than fecal indicator bacteria. •Multiple phages should be added to the microbial source tracking toolbox. •Engineered phage or phage cocktail can effectively target resistant bacteria. •In phage use, phage-mediated horizontal gene transfer cannot be ignored. •More schemes are needed to prevent phage concentration from decreasing. Wastewater is a breeding ground for many pathogens, which may pose a threat to human health through various water transmission pathways. Therefore, a simple and effective method is urgently required to monitor and treat wastewater. As bacterial viruses, bacteriophages (phages) are the most widely distributed and abundant organisms in the biosphere. Owing to their capacity to specifically infect bacterial hosts, they have recently been used as novel tools in water pollution control. The purpose of this review is to summarize and evaluate the roles of phages in monitoring pathogens, tracking pollution sources, treating pathogenic bacteria, infecting bloom-forming cyanobacteria, and controlling bulking sludge and biofilm pollution in wastewater treatment systems. We also discuss the limitations of phage usage in water pollution control, including phage-mediated horizontal gene transfer, the evolution of bacterial resistance, and phage concentration decrease. This review provides an integrated outlook on the use of phages in water pollution control.  相似文献   
718.
Root-associated microbial communities are very important for biogeochemical cycles of carbon, nitrogen, and sulfur in wetland ecosystems, and help to enhance the mechanisms of plant invasions. In the estuary of Jiulong River (China), Spartina alternifiora has widely invaded Kandelia obovata-dominated habitats, making it necessary to investigate the influence of rootassociated bacteria. The endophytic and rhizosphere bacterial community structures associated with selected plant species were investigated using the barcoded Illumina paired-end sequencing technique. The diversity indices of bacteria associated with the roots of S. alterniflora were higher than those of the transition stands and K. obovata monoculture. Using principal coordinate analysis with UniFrac metrics, the comparison of diversity showed that all samples could be significantly clustered into three major groups, according to the bacterial communities of origin. Four phyla, namely, Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes, were abundant in the rhizoplane of the two salt marsh plants, whereas Cyanobacteria and Proteobacteria were the more abundant endophytic bacteria. Proteobacteria, Bacteroidetes, Chloroflexi, and Firmicutes in the rhizosphere bacteria of S. alterniflora accounted for 78.0%, 5.6%, 3.3%, and 1.6%, respectively. Members of the phyla Spirochaetes and Chloroflexi were found among the endophytic bacteria of S. alterniflora and K. obovata, respectively. Using linear discriminate analysis, we found some dominant rhizoplane and endophytic bacteria, including Pseudoalteromonadaceae, Vibrionaceae, Methylophilaceae, and Desulfovibrio, which could potentially affect the carbon, nitrogen, and sulfur cycles. Of interest was that endophytic bacteria were more sensitive to plant invasion than rhizosphere bacteria. Thus, the results provide evidence for the isolation of functional bacteria and the effects of root-associated microbial groups on S. alterniflora invasions. © 2018 Science Press. All rights reserved.  相似文献   
719.
In an effort to remove BDE-47 residues from the environment, a bacterial strain that is capable of utilizing BDE-47 as the sole carbon source was isolated and screened from soil collected from an e-waste recycling area in Tianjin to analyze the degradation properties. The strain was preliminarily identified as Enterobacter sp. according to a 16S rDNA gene sequence analysis. The strain degraded 35.8% of 525 μg/L of BDE-47 in 35 d when the initial concentration of bacteria was 7.1 × 105 cells/ mL. The product of the biodegradation of BDE-47 was BDE-28. The biodegradation of BDE-47 fit well with first-order kinetics, and its degradation kinetics was ln Ct = - 0.104t + 6.22. With the addition of an electron acceptor, such as Fe3+, SO4 2- and NO3 -, the BDE-47 degradation rate was significantly increased to 49.8%, 59.1%, and 67.3%, respectively. The above results revealed that the strain could degrade BDE-47, which is of importance in the application of environmental bioremediation of BDE-47. © 2018 Science Press. All rights reserved.  相似文献   
720.
Xanthoceras sorbifolia Bunge with tumor roots was discovered, and the endophytic bacteria that were isolated from the tumor roots were purified and identified. This paper aimed to study the characteristics of endophytic bacteria. The CAS detection plate, Salkowski colorimetry, phosphate solubilizing circle, and molybdenum antimony spectrophotometry were used to analyze endophytic bacteria ability, which produced siderophores, secreted indole-3-acetic acid (IAA), and dissolved phosphorus. Strains were isolated from the tumor roots through morphological and molecular identification, and they were named XSB1-XSB9, of which 6 strains belonged to Bacillus sp., 2 strains belonged to Brevibacillus sp., and 1 strain belonged to Pseudomonas sp. All 9 strains produced siderophores; strains XSB3, XSB4, XSB8, and XSB9 were extremely high yielding, and strains XSB5 and XSB6 were high yielding. The strains with high yields were XSB3, XSB4, XSB5, XSB6, XSB8, and XSB9 and accounted for 66.7% of the tested strains. Nine strains secreted IAA; the concentration of IAA secreted by the strains that contained tryptophan was between 15-50 mg/L, and the concentration of IAA secreted by the one strain without tryptophan was between 10-35 mg/L. The IAA ability of the XSB2, XSB3, XSB4, XSB5, and XSB9 strains were significantly different (P < 0.05) after adding tryptophan. These results indicate that the synthesis of IAA may be the tryptophan synthesis pathway where tryptophan is used as a precursor. All 9 strains had some ability to dissolve phosphorus. The concentration of phosphate in the solubilizing strains, XSB1, XSB2, XSB4, and XSB5, were significantly higher than that in the other strains (P < 0.01), and the concentration of phosphate solubilizing was between 50-90 mg/L; the ability to dissolve phosphate was increased by 19-29 times. The XSB4 and XSB5 strains, which produced siderophores, secreted IAA and had a strong capacity to dissolve phosphorus, may be candidate strains for promoting growth. This research provides the foundation for the development and utilization of rhizosphere microbes to understand the resistance mechanisms and cultivation level of X. sorbifolia. © 2018 Science Press. All rights reserved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号