首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2268篇
  免费   141篇
  国内免费   422篇
安全科学   54篇
废物处理   16篇
环保管理   238篇
综合类   915篇
基础理论   871篇
环境理论   1篇
污染及防治   132篇
评价与监测   47篇
社会与环境   514篇
灾害及防治   43篇
  2024年   2篇
  2023年   38篇
  2022年   47篇
  2021年   58篇
  2020年   48篇
  2019年   73篇
  2018年   52篇
  2017年   85篇
  2016年   100篇
  2015年   97篇
  2014年   86篇
  2013年   210篇
  2012年   132篇
  2011年   220篇
  2010年   183篇
  2009年   117篇
  2008年   149篇
  2007年   173篇
  2006年   150篇
  2005年   124篇
  2004年   107篇
  2003年   80篇
  2002年   75篇
  2001年   65篇
  2000年   58篇
  1999年   47篇
  1998年   36篇
  1997年   26篇
  1996年   27篇
  1995年   40篇
  1994年   18篇
  1993年   32篇
  1992年   8篇
  1991年   18篇
  1990年   5篇
  1989年   10篇
  1988年   4篇
  1987年   1篇
  1986年   5篇
  1984年   3篇
  1983年   5篇
  1982年   3篇
  1981年   2篇
  1980年   1篇
  1977年   2篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有2831条查询结果,搜索用时 31 毫秒
901.
我国明确提出可持续发展战略,并开始逐步实施.同时,我国已经提出了科学发展观与和谐社会的理念,这些政策与方针的提出就是力图实现在资源环境承载力约束条件下的最优发展.因此,首先应在理论上正确认识经济可持续增长的资源环境承载力问题,从内涵、特征与功能等方面对资源环境承载力进行系统梳理.这是实现资源环境承载力承载范围内最佳经济增长的前提条件,是正确制定和实施可持续发展战略的理论基础.  相似文献   
902.
从碳循环角度改进生态足迹模型,在建立向量自回归模型的基础上,运用广义脉冲响应函数法来描述民族自治区经济增长与高碳能源生态足迹之间的动态关联性.冲击响应分析表明,民族自治区经济增长与高碳能源生态足迹之间存在较强的交互响应作用,一方面经济增长是高碳能源生态足迹持续增加的重要原因,另一方面高碳能源生态足迹对经济增长具有一定的反作用.  相似文献   
903.
湖北省农业经济增长的科技贡献率分析   总被引:1,自引:0,他引:1  
利用科学技术促进农业增长是现代农业发展的主要措施,定量测算科技贡献有助于明确农业发展的目标.利用湖北省1986-2009年农业经济数据,应用索罗余值模型从时空角度测算和分析了湖北省农业科技进步对农业增长的贡献.结果表明,湖北省农业科技进步对农业增长的贡献率整体呈波动式上升趋势,具有明显的阶段性特征,同时农业科技进步贡献率的高低受政策和制度环境影响非常明显;湖北省农业科技进步对农业增长的贡献率区域差异突出,表现出农业科技贡献率与区域经济发达程度、市场发育程度和自然条件密切相关,研究结论为制定推进湖北现代农业发展政策提供科学的依据.  相似文献   
904.
The recent economic meltdown worldwide has reinforced our understanding of the effects of decoupling economic growth, monetary policy, and resources. Concern for peak oil and suggestions that it may have contributed to the global economic woes as well as over concern for the banking fraud may be adding confusion over the underlying causes and sending a misleading message to the public and ultimately to policy makers. Viewing the economy as simply a circulation of money that can be manipulated to increase spending and therefore consume our way out of the current economic situation, is courting disaster by deluding the public that the solution lies in simple adjustments to the current monetary system. Similarly, emphasizing that energy is the problem and that the solution can be found with another energy source is probably counterproductive in the short run and may be disastrous in the long run. The recent nuclear accident in Japan seriously calls into question increased dependence on nuclear energy and renewable energy sources, in the majority, have low net yields and are unevenly distributed worldwide.In this paper we frame the economic system as a subsystem of the larger more encompassing geobiosphere and suggest that within this context, neoclassical economics is unlikely to provide sufficient explanation of the recent economic melt-down. From a biophysical perspective, increasing the amount or speed of money circulation as well as extracting more energy from whatever source is available will only compound the problems and relying on growth as the solution to what ails the global economy is not a desirable nor a tenable solution.  相似文献   
905.
Forest productivity is strongly affected by seasonal weather patterns and by natural or anthropogenic disturbances. However weather effects on forest productivity are not currently represented in inventory-based models such as CBM-CFS3 used in national forest C accounting programs. To evaluate different approaches to modelling these effects, a model intercomparison was conducted among CBM-CFS3 and four process models (ecosys, CN-CLASS, Can-IBIS and 3PG) over a 2500 ha landscape in the Oyster River (OR) area of British Columbia, Canada. The process models used local weather data to simulate net primary productivity (NPP), net ecosystem productivity (NEP) and net biome productivity (NBP) from 1920 to 2005. Other inputs used by the process and inventory models were generated from soil, land cover and disturbance records. During a period of intense disturbance from 1928 to 1943, simulated NBP diverged considerably among the models. This divergence was attributed to differences among models in the sizes of detrital and humus C stocks in different soil layers to which a uniform set of soil C transformation coefficients was applied during disturbances. After the disturbance period, divergence in modelled NBP among models was much smaller, and attributed mainly to differences in simulated NPP caused by different approaches to modelling weather effects on productivity. In spite of these differences, age-detrended variation in annual NPP and NEP of closed canopy forest stands was negatively correlated with mean daily maximum air temperature during July-September (Tamax) in all process models (R2 = 0.4-0.6), indicating that these correlations were robust. The negative correlation between Tamax and NEP was attributed to different processes in different models, which were tested by comparing CO2 fluxes from these models with those measured by eddy covariance (EC) under contrasting air temperatures (Ta). The general agreement in sensitivity of annual NPP to Tamax among the process models led to the development of a generalized algorithm for weather effects on NPP of coastal temperate coniferous forests for use in inventory-based models such as CBM-CFS3: NPP′ = NPP − 57.1 (Tamax − 18.6), where NPP and NPP′ are the current and temperature-adjusted annual NPP estimates from the inventory-based model, 18.6 is the long-term mean daily maximum air temperature during July-September, and Tamax is the mean value for the current year. Our analysis indicated that the sensitivity of NPP to Tamax was nonlinear, so that this algorithm should not be extrapolated beyond the conditions of this study. However the process-based methodology to estimate weather effects on NPP and NEP developed in this study is widely applicable to other forest types and may be adopted for other inventory based forest carbon cycle models.  相似文献   
906.
A dynamic and heterogeneous species abundance model generating the lognormal species abundance distribution is fitted to time series of species data from an assemblage of stoneflies and mayflies (Plecoptera and Ephemeroptera) of an aquatic insect community collected over a period of 15 years. In each year except one, we analyze 5 parallel samples taken at the same time of the season giving information about the over-dispersion in the sampling relative to the Poisson distribution. Results are derived from a correlation analysis, where the correlation in the bivariate normal distribution of log abundance is used as measurement of similarity between communities. The analysis enables decomposition of the variance of the lognormal species abundance distribution into three components due to heterogeneity among species, stochastic dynamics driven by environmental noise, and over-dispersion in sampling, accounting for 62.9, 30.6 and 6.5% of the total variance, respectively. Corrected for sampling the heterogeneity and stochastic components accordingly account for 67.3 and 32.7% of the among species variance in log abundance. By using this method, it is possible to disentangle the effect of heterogeneity and stochastic dynamics by quantifying these components and correctly remove sampling effects on the observed species abundance distribution.  相似文献   
907.
Several studies have proven the importance of field margins in sustaining biodiversity and other work has been done on the effect of field management on field margin flora. However few models have been built to predict the effects of field management on the flora. Our project addresses this need for a model capable of predicting the effect of cropping techniques and their timing on the flora of field margins. Primula vulgaris is a biodiversity indicator, characteristic of undisturbed flora and found in field margins and woodlands: its population has been declining for several years. We created a temporal matrix model of P. vulgaris populations on field margins, taking into account the effects of field, field margin and roadside management based on literature and expert knowledge. We then analysed its sensitivity to demographic parameters by comparing lambda (growth rate) sensitivity and elasticity. We compared the management parameter effect using the relative growth rate of the population after 6 years of simulation. Sensitivity analysis to biological parameters showed the importance of adult survival and seed production and germination. Results show that P. vulgaris is particularly sensitive to broad-spectrum herbicides and that other management techniques like early mowing, scything and scrub-killer (diluted broad-spectrum herbicide or specific herbicide) are less aggressive. Our simulations show that management of cash crops in Brittany is too aggressive for P. vulgaris populations and that 4-5 years of grassland in the adjacent field are necessary to maintain populations.  相似文献   
908.
Animals face trade-offs between predation risk and foraging success depending on their location in the landscape; for example, individuals that remain near a common shelter may be safe from predation but incur stronger competition for resources. Despite a long tradition of theoretical exploration of the relationships among foraging success, conspecific competition, predation risk, and population distribution in a heterogeneous environment, the scenario we describe here has not been explored theoretically. We construct a model of habitat use rules to predict the distribution of a local population (prey sharing a common shelter and foraging across surrounding habitats). Our model describes realized habitat quality as a ratio of density- and location-dependent mortality to density-dependent growth. We explore how the prey distribution around a shelter is expected to change as the parameters governing the strength of density dependence, landscape characteristics, and local abundance vary. Within the range of parameters where prey spend some time away from shelter but remain site-attached, the prey density decreases away from shelter. As the distance at which prey react to predators increases, the population range generally increases. At intermediate reaction distances, however, increases in the reaction distance lead to decreases in the maximum foraging distance because of increased evenness in the population distribution. As total abundance increases, the population range increases, average population density increases, and realized quality decreases. The magnitude of these changes differs in, for example, ‘high-’ and ‘low-visibility’ landscapes where prey can detect predators at different distances.  相似文献   
909.
Evidence of inbreeding depression is commonly detected from the fitness traits of animals, yet its effects on population growth rates of endangered species are rarely assessed. We examined whether inbreeding depression was affecting Sierra Nevada bighorn sheep (Ovis canadensis sierrae), a subspecies listed as endangered under the U.S. Endangered Species Act. Our objectives were to characterize genetic variation in this subspecies; test whether inbreeding depression affects bighorn sheep vital rates (adult survival and female fecundity); evaluate whether inbreeding depression may limit subspecies recovery; and examine the potential for genetic management to increase population growth rates. Genetic variation in 4 populations of Sierra Nevada bighorn sheep was among the lowest reported for any wild bighorn sheep population, and our results suggest that inbreeding depression has reduced adult female fecundity. Despite this population sizes and growth rates predicted from matrix-based projection models demonstrated that inbreeding depression would not substantially inhibit the recovery of Sierra Nevada bighorn sheep populations in the next approximately 8 bighorn sheep generations (48 years). Furthermore, simulations of genetic rescue within the subspecies did not suggest that such activities would appreciably increase population sizes or growth rates during the period we modeled (10 bighorn sheep generations, 60 years). Only simulations that augmented the Mono Basin population with genetic variation from other subspecies, which is not currently a management option, predicted significant increases in population size. Although we recommend that recovery activities should minimize future losses of genetic variation, genetic effects within these endangered populations-either negative (inbreeding depression) or positive (within subspecies genetic rescue)-appear unlikely to dramatically compromise or stimulate short-term conservation efforts. The distinction between detecting the effects of inbreeding depression on a component vital rate (e.g., fecundity) and the effects of inbreeding depression on population growth underscores the importance of quantifying inbreeding costs relative to population dynamics to effectively manage endangered populations.  相似文献   
910.
Populations of landbirds (bird species that occupy terrestrial habitats for most of their life cycle) are declining throughout North America (north of Mexico) and Europe, yet little is known about how demography is driving this trend. A recent model of 5 geographically separated populations of Cerulean Warblers (Dendroica cerulea) that was based on within-season sampling of nest survival and fledgling success shows that all populations are sinks (annual reproduction is consistently less than annual adult mortality). I tested this indirect model by directly measuring fecundity (number of female fledglings/female) during the breeding season for 2 years in a Cerulean Warbler population occupying a mature forest in southwestern Michigan (U.S.A.) I determined territories of male birds on the basis of male plumage characters and phases of the nesting cycle (2007) and on uniquely color-banded males (2008). I transferred locations of identified males to topographic maps. I counted all fledglings in territories from May to July each year. The model I tested may apply only to single-brooded species; therefore, I searched the literature to estimate the percentage of single-brooded species in North America. The breeding season of Cerulean Warblers was short- nearly all nests were initiated from mid-May to late June. Nest predation and brood parasitism were primary and rare causes of nest failure, respectively. Significantly fewer Cerulean Warblers fledged from parasitized than from nonparasitized nests. Fledgling survival required to maintain the population size was well above previously published values for Neotropical migrants. Single-brooded species comprise 62% of North American breeding bird species for which the number of broods per year is known; I believe my results may apply to these species. The consistency between identification of populations as sources or sinks on the basis of either model estimates or direct measurements suggests that a demographic model relying on within-season sampling of fecundity is adequate to determine population status of single-brooded avian populations. In addition, on the basis of results of previous studies, annual adult survival rate of the Cerulean Warbler is typical of parulid warblers that are not declining. Thus, low fecundity, here determined with different quantitative methods, can drive status of landbird species with high-observed survival.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号