首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2231篇
  免费   257篇
  国内免费   261篇
安全科学   371篇
废物处理   20篇
环保管理   226篇
综合类   817篇
基础理论   543篇
污染及防治   57篇
评价与监测   83篇
社会与环境   356篇
灾害及防治   276篇
  2024年   17篇
  2023年   55篇
  2022年   82篇
  2021年   96篇
  2020年   84篇
  2019年   58篇
  2018年   59篇
  2017年   80篇
  2016年   85篇
  2015年   93篇
  2014年   84篇
  2013年   141篇
  2012年   135篇
  2011年   127篇
  2010年   124篇
  2009年   105篇
  2008年   102篇
  2007年   144篇
  2006年   136篇
  2005年   127篇
  2004年   90篇
  2003年   84篇
  2002年   86篇
  2001年   80篇
  2000年   69篇
  1999年   57篇
  1998年   59篇
  1997年   53篇
  1996年   46篇
  1995年   52篇
  1994年   20篇
  1993年   35篇
  1992年   11篇
  1991年   19篇
  1990年   10篇
  1989年   7篇
  1988年   3篇
  1987年   2篇
  1986年   4篇
  1984年   4篇
  1982年   1篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1977年   2篇
  1976年   1篇
  1973年   2篇
  1972年   3篇
  1971年   3篇
  1970年   1篇
排序方式: 共有2749条查询结果,搜索用时 15 毫秒
81.
我国东亚飞蝗发生的气候背景及长期预测   总被引:5,自引:0,他引:5  
我国东亚飞蝗的发生发展与大气环流的变化密切相关。对1952—1999年我国东亚飞蝗的发生面积与大气环流的74项特征指标值进行了相关研究。结果表明,上一年9月到当年4月大西洋副高面积、强度、脊线位置、北界,上一年9月、10月西藏高原指数,当年1月、2月、5月亚洲区极涡面积。北半球1月极涡面积,亚洲3月纬向环流指数以及亚洲5月经向环流指数与我国蝗虫发生面积相关明显。其中大西洋副热带高压对我国东亚飞蝗发生的影响主要是通过影响秋冬季节蝗卵的孵化和越冬期间的地面温度,从而影响蝗卵基数和孵化为成虫的数量,进而影响着我国东亚飞蝗发生、发展和危害情况的变化。通过上述对蝗虫发生有明显影响的大气环流特征值进行回归分析,结果表明。上年9月和当年4月大西洋副高脊线、3月大西洋副高北界、上年9月西藏高原指数、5月亚洲区极涡面积和3月亚洲纬向环流指数与发生面积拟合较好,说明这些大气环流特征值的强弱是决定东亚飞蝗发生的关键因素。  相似文献   
82.
A discriminate analysis method for probability forecast of dust storms in Mongolia has been developed. The prediction method uses data recorded at 23 meteorological stations in the Gobi and steppe regions of Mongolia, including surface air pressure and geo-potential height at the 500-hPa level on grid points, and weather maps from 1975 to 1990. Weather elements such as air temperature, pressure, geo-potential height etc, which influence the formation of dust storms, are prepared as predictors. To select the most informative/important predictors (variables), we used a mean correlation matrix of variables together with the Mahalonobis distance, and correlation coefficients between dust storms and predictors with an orthogonalization for removing correlated predictors. The most informative predictors for dust storm prediction are intensities of surface cyclones and migratory anticyclones, passage of cold fronts, the horizontal gradients of the surface air pressure in the cold frontal zone, cyclonic circulations from the ground surface up to the 500-hPa level, the geo-potential height at 500-hPa level and its temporal changes. Selected predictors are used in discriminate analysis for formulating dust storm prediction equations. Sandstorm data have been classified into three classes, viz., strong, moderate and weak dust storms, depending on their intensities, durations and areas covered. Predictions of the probabilities of dust storm occurrence use the prediction equations for each class. The prediction is made from 12 hours to 36 hours. Verification of the probability forecasts of dust storms is also shown. The accuracy of forecasts is 72.2–79.9% with the data used for developing equations (dependent variables), in contrast to 67.1–72.0% with unrelated data for deriving equations (independent variables).  相似文献   
83.
大气环境影响评价工作分级要求要点   总被引:1,自引:0,他引:1  
根据大气环境影响评价工作的分级要求,提出了针对性的工作要点,以满足大气环境评价工作的需要.  相似文献   
84.
Sagoff [Journal of Agricultural and Environmental Ethics 18 (2005), 215–236] argues, against growing empirical evidence, that major environmental impacts of non-native species are unproven. However, many such impacts, including extinctions of both island and continental species, have both been demonstrated and judged by the public to be harmful. Although more public attention has been focused on non-native animals than non-native plants, the latter more often cause ecosystem-wide impacts. Increased regulation of introduction of non-native species is, therefore, warranted, and, contra Sagoff’s assertions, invasion biologists have recently developed methods that greatly aid prediction of which introduced species will harm the environment and thus enable more efficient regulation. The fact that introduced species may increase local biodiversity in certain instances has not been shown to result in desired changes in ecosystem function. In other locales, they decrease biodiversity, as they do globally.  相似文献   
85.
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F ) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.  相似文献   
86.
Although wildlife conservation actions have increased globally in number and complexity, the lack of scalable, cost‐effective monitoring methods limits adaptive management and the evaluation of conservation efficacy. Automated sensors and computer‐aided analyses provide a scalable and increasingly cost‐effective tool for conservation monitoring. A key assumption of automated acoustic monitoring of birds is that measures of acoustic activity at colony sites are correlated with the relative abundance of nesting birds. We tested this assumption for nesting Forster's terns (Sterna forsteri) in San Francisco Bay for 2 breeding seasons. Sensors recorded ambient sound at 7 colonies that had 15–111 nests in 2009 and 2010. Colonies were spaced at least 250 m apart and ranged from 36 to 2,571 m2. We used spectrogram cross‐correlation to automate the detection of tern calls from recordings. We calculated mean seasonal call rate and compared it with mean active nest count at each colony. Acoustic activity explained 71% of the variation in nest abundance between breeding sites and 88% of the change in colony size between years. These results validate a primary assumption of acoustic indices; that is, for terns, acoustic activity is correlated to relative abundance, a fundamental step toward designing rigorous and scalable acoustic monitoring programs to measure the effectiveness of conservation actions for colonial birds and other acoustically active wildlife. La Actividad Vocal como un Índice Escalable y de Bajo Costo del Tamaño de Colonia de las Aves Marinas  相似文献   
87.
Despite several decades of research on the effects of fragmentation and habitat change on biodiversity, there remain strong biases in the geographical regions and taxonomic species studied. The knowledge gaps resulting from these biases are of particular concern if the forests most threatened with modification are also those for which the effects of such change are most poorly understood. To quantify the nature and magnitude of such biases, we conducted a systematic review of the published literature on forest fragmentation in the tropics for the period 1980–2012. Studies included focused on any type of response of single species, communities, or assemblages of any taxonomic group to tropical forest fragmentation and on fragmentation‐related changes to forests. Of the 853 studies we found in the SCOPUS database, 64% were conducted in the Neotropics, 13% in Asia, 10% in the Afrotropics, and 5% in Australasia. Thus, although the Afrotropics is subject to the highest rates of deforestation globally, it was the most disproportionately poorly studied biome. Significant taxonomic biases were identified. Of the taxonomic groups considered, herpetofauna was the least studied in the tropics, particularly in Africa. Research examining patterns of species distribution was by far the most common type (72%), and work focused on ecological processes (28%) was rare in all biomes, but particularly in the Afrotropics and for fauna. We suggest research efforts be directed toward less‐studied biogeographic regions, particularly where the threat of forest fragmentation continues to be high. Increased research investment in the Afrotropics will be important to build knowledge of threats and inform responses in a region where almost no efforts to restore its fragmented landscapes have yet begun and forest protection is arguably most tenuous. Sesgos Biogeográficos y Taxonómicos en la Investigación de la Fragmentación de Bosques Tropicales  相似文献   
88.
Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150–200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat‐based effective distance metrics, least‐cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species‐specific analyses parallels the previous shift from general minimum‐viable‐population thresholds to detailed viability modeling in endangered species recovery planning. Desarrollo de Criterios de Conectividad Metapoblacional a Partir de Datos Genéticos y de Hábitat para Recuperar al Lobo Mexicano en Peligro de Extinción  相似文献   
89.
Population viability analysis (PVA) is a reliable tool for ranking management options for a range of species despite parameter uncertainty. No one has yet investigated whether this holds true for model uncertainty for species with complex life histories and for responses to multiple threats. We tested whether a range of model structures yielded similar rankings of management and threat scenarios for 2 plant species with complex postfire responses. We examined 2 contrasting species from different plant functional types: an obligate seeding shrub and a facultative resprouting shrub. We exposed each to altered fire regimes and an additional, species‐specific threat. Long‐term demographic data sets were used to construct an individual‐based model (IBM), a complex stage‐based model, and a simple matrix model that subsumes all life stages into 2 or 3 stages. Agreement across models was good under some scenarios and poor under others. Results from the simple and complex matrix models were more similar to each other than to the IBM. Results were robust across models when dominant threats are considered but were less so for smaller effects. Robustness also broke down as the scenarios deviated from baseline conditions, likely the result of a number of factors related to the complexity of the species’ life history and how it was represented in a model. Although PVA can be an invaluable tool for integrating data and understanding species’ responses to threats and management strategies, this is best achieved in the context of decision support for adaptive management alongside multiple lines of evidence and expert critique of model construction and output.  相似文献   
90.
Abundance estimates are essential for assessing the viability of populations and the risks posed by alternative management actions. An effort to estimate abundance via a repeated mark‐recapture experiment may fail to recapture marked individuals. We devised a method for obtaining lower bounds on abundance in the absence of recaptures for both panmictic and spatially structured populations. The method assumes few enough recaptures were expected to be missed by random chance. The upper Bayesian credible limit on expected recaptures allows probabilistic statements about the minimum number of individuals present in the population. We applied this method to data from a 12‐year survey of pallid sturgeon (Scaphirhynchus albus) in the lower and middle Mississippi River (U.S.A.). None of the 241 individuals marked was recaptured in the survey. After accounting for survival and movement, our model‐averaged estimate of the total abundance of pallid sturgeon ≥3 years old in the study area had a 1%, 5%, or 25% chance of being <4,600, 7,000, or 15,000, respectively. When we assumed fish were distributed in proportion to survey catch per unit effort, the farthest downstream reach in the survey hosted at least 4.5–15 fish per river kilometer (rkm), whereas the remainder of the reaches in the lower and middle Mississippi River hosted at least 2.6–8.5 fish/rkm for all model variations examined. The lower Mississippi River had an average density of pallid sturgeon ≥3 years old of at least 3.0–9.8 fish/rkm. The choice of Bayesian prior was the largest source of uncertainty we considered but did not alter the order of magnitude of lower bounds. Nil‐recapture estimates of abundance are highly uncertain and require careful communication but can deliver insights from experiments that might otherwise be considered a failure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号