首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8353篇
  免费   661篇
  国内免费   2780篇
安全科学   656篇
废物处理   952篇
环保管理   1029篇
综合类   6227篇
基础理论   758篇
环境理论   2篇
污染及防治   1796篇
评价与监测   189篇
社会与环境   156篇
灾害及防治   29篇
  2024年   9篇
  2023年   45篇
  2022年   107篇
  2021年   146篇
  2020年   154篇
  2019年   152篇
  2018年   179篇
  2017年   230篇
  2016年   265篇
  2015年   352篇
  2014年   509篇
  2013年   590篇
  2012年   729篇
  2011年   774篇
  2010年   611篇
  2009年   668篇
  2008年   459篇
  2007年   812篇
  2006年   890篇
  2005年   642篇
  2004年   526篇
  2003年   542篇
  2002年   472篇
  2001年   380篇
  2000年   324篇
  1999年   266篇
  1998年   206篇
  1997年   159篇
  1996年   138篇
  1995年   136篇
  1994年   87篇
  1993年   80篇
  1992年   40篇
  1991年   30篇
  1990年   21篇
  1989年   6篇
  1988年   9篇
  1987年   5篇
  1986年   8篇
  1984年   5篇
  1983年   2篇
  1981年   3篇
  1978年   7篇
  1977年   4篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   4篇
  1971年   2篇
  1970年   1篇
排序方式: 共有10000条查询结果,搜索用时 140 毫秒
881.
SOS/umu测试法被广泛应用于化合物和复杂混合物遗传毒性的评价,由于该技术所用菌种为致病菌且操作步骤繁琐等原因,制约了技术的推广应用。研究建立了基于重组大肠杆菌SOS效应的水质遗传毒性检测方法(专利号:ZL201110022476.1),应用该方法评价了某市4座污水厂出水的直接遗传毒性效应,同时以污水处理一厂为例考察了直接遗传毒性效应的季节变化规律以及不同的工艺对水中直接遗传毒性物质的去除情况。结果显示:各污水厂出水均表现出一定的直接遗传毒性,对应的4-NQO毒性当量浓度范围为0.018~0.514 mg·L-1;一年四季中夏季进出水直接遗传毒性效应最高,现有工艺中生化处理工艺段对直接遗传毒性去除效果最佳,去除率为33.33%。该方法操作便利、检测敏感性较高、操作危险性较低,可用于水中直接遗传毒性效应的测试。  相似文献   
882.
Abstract

A laboratory scale two‐stage sequencing batch reactor (TSSBR) was used to study the effectiveness of pH as a real‐time control parameter in swine wastewater treatment. A Ringlace media was inserted into the A/O (Anoxic/Oxic) reactor for bacteria immobilization. The TSSBR was subjected to three levels of organic loading. The pH and ORP (Oxidation Reduction Potential) patterns obtained were consistent with distinct features, enabling the real‐time control strategy to effectively set a flexible aeration time pending on influent concentration, hence resulting in flexible cycle time and HRT (Hydraulic Retention Time) for the system. The real‐time process ensured a removal efficiency of over 99% and 95%, respectively, for ammonia and TOC (Total Organic Carbon). For NO3 ‐N and PO4 ‐3, the run with influent TOC = 4,000 mg/L yielded the most efficient removal of 61% and 95%, respectively. Test results suggest that pH can be a viable tool for on‐line real‐time control of a biological treatment process.  相似文献   
883.

In this study, the photochemical degradation of livestock wastewater was carried out by the Fenton and Photo-Fenton processes. The effects of pH, reaction time, the molar ratio of Fe2 +/H2O2, and the Fe2 + dose were studied. The optimal conditions for the Fenton and Photo-Fenton processes were found to be at a pH of 4 and 5, an Fe2 + dose of 0.066 M and 0.01 M, a concentration of hydrogen peroxide of 0.2 M and 0.1 M, and a molar ratio (Fe2 +/H2O2) of 0.33 and 0.1, respectively. The optimal reaction times in the Fenton and Photo-Fenton processes were 60 min and 80 min, respectively. Under the optimal conditions of the Fenton and Photo-Fenton processes, the chemical oxygen demand (COD), color, and fecal coliform removal efficiencies were approximately 70–79, 70–85 and 96.0–99.4%, respectively.  相似文献   
884.
Abstract

Land disposal of olive oil wastewater using it as a soil amendment requires a knowledge of the effects that its application may produce on the status of the mineral nutrients in the plant‐soil system. A pot experiment using calcareous soil was performed in a growth chamber to examine the effects of olive oil wastewater on the availability and postharvest soil extractability of K, Mg and Mn. The experiment included 6 treatments: two rates of olive oil wastewater, two mineral fertilizer treatments containing K (which supplied K in amounts equivalent to the K supplied by the olive oil wastewater treatments), a K‐free mineral fertilizer treatment, and a control. The pots were sown with ryegrass as the test plant, harvesting 3 times at intervals of one month. Olive oil wastewater has demonstrated a considerable capacity for supplying K that can be assimilated by the plant, tending in fact to surpass the mineral potassium fertilizer tested. The application of olive oil wastewater tends to reduce the concentration of Mg in the plant, similarly to the effect of adding mineral potassium fertilizer. An enhancement of Mn availability takes place in the soil amended with olive oil wastewater, which on occasion has produced Mn concentrations in plant that could be considered phytotoxic or at least excessive. After harvesting, we observed an increase in the amount of exchangeable K in soil with added industrial wastewater. However, these increases are lower than those in soil treated with mineral potassium fertilizer. The levels of exchangeable, carbonate‐bound, organic‐bound and residual Mg in soil were higher in treatments incorporating olive oil wastewater than in those with added mineral K, with the opposite tendency occurring in the amount of Fe‐Mn oxides‐bound Mg in soil. Treatments based on olive oil wastewater, especially in high doses, increased the amount of exchangeable and carbonate‐bound Mn in soil, in comparison with treatments adding mineral fertilizers with or without K. In contrast, the addition of industrial wastewater caused a drop in the amount of Fe‐Mn oxides‐bound and organic‐bound Mn in soil.  相似文献   
885.
A full-scale sequencing batch reactor (SBR) system was evaluated for its ability to remove carbon and nitrogen from swine wastewater. The SBR was operated on four, six-hour cycles each day, with each cycle consisting of 4.5 hours of “React,” 0.75 hours of “Settling”, 0.75 hours for “Draw” and “Fill.” Within each cycle, an amount of wastewater equivalent to about 5% of the reactor volume (5,500 litres) was removed and added. The SBR system was able to remove 82% of biochemical oxygen demand (BOD) and more than 75% of nitrogen. Even though the SBR effluent, with an average effluent BOD5 of about 588 mg L? 1, did not meet the discharge criteria, it enabled a reduction of the land base required for land application of swine wastewater by about 75%. Results indicated that the SBR system was a viable method for the treatment of swine wastewater.  相似文献   
886.
In this study the effects of nickel (NiCl2) administered in drinking water (0.02; 0.2 and 2.0 mg NiCl2/L for 28 days) on laying hen body weight, egg production and egg quality is reported. Growth parameters during the experiment were significantly decreased mainly in the group with the highest nickel concentration. In total egg production dose–dependent decrease in all experimental groups was found. Egg weight was mainly affected in the group with the highest nickel concentration. Specific egg weight was not altered. Albumen weight and albumen content was significantly decreased in groups with the highest nickel concentration in comparison with the control group.

Egg yolk analysis detected significantly decreased yolk weight in the group with the highest nickel experimental level. In yolk color a significant difference was detected between the group receiving 0.02 and 0.2 mg NiCl2/mL. Eggshell compactness was increased in all experimental groups what could be induced by altered mineralization of eggshell. Results of this study clearly report a negative effect of nickel as an environmental pollutant on laying hen body weight, egg production as well as egg quality.  相似文献   
887.
A study of the anaerobic treatment of wastewaters derived from red (RWWW) and tropical fruit wine (TFWWW) production was carried out in four laboratory-scale fluidized bed reactors with natural zeolite as bacterial support. These reactors operated at mesophilic temperature (35°C). Reactors R1 and R2 contained Chilean natural zeolite, while reactors R3 and R4 used Cuban natural zeolite as microorganism support. In addition, reactors R1 and R3 processed RWWW, while reactors R2 and R4 used TFWWW as substrate. The biomass concentration attached to zeolites in the four reactors studied was found to be in the range of 44–46 g volatile solids (VS)/L after 90 days of operation time. Both types of zeolites can be used indistinctly in the fluidized bed reactors achieving more than 80%–86% chemical oxygen demand (COD) removals for organic loading rates (OLR) of up to at least 20 g COD/L d. pH values remained within the optimal range for anaerobic microorganisms for OLR values of up to 20 and 22 g COD/L d for RWWW and TFWWW, respectively. Toxicity and inhibition levels were observed at an OLR of 20 g COD/L d in reactors R1 and R3 while processing RWWW, whereas the aforementioned inhibitory phenomena were not observed at an OLR of 24 g COD/L d in R2 and R4, treating TFWWW as a consequence of the lower phenolic compound content present in this substrate. The volatile fatty acid (VFA) levels were always lower in reactors processing TFWWW (R2 and R4) and these values (< 400 mg/L, as acetic acid) were lower than the suggested limits for digester failure. The specific methanogenic activity (SMA) was twice as high in reactors R2 and R4 than in R1 and R3 after 120 days of operation when all reactors operated at an OLR of 20 g COD/L d.  相似文献   
888.
靛蓝牛仔布印染废水组分复杂,浓度高、水量大,属于难处理的工业废水,为了有效降低后续生物处理单元的负荷,采用铁炭微电解工艺对该废水进行预处理;通过正交实验考察pH、反应时间及铁炭比处理效果的影响规律及COD去除反应动力学,并对各因素作了单因素影响实验,确定了最佳工艺条件.结果表明,铁炭微电解法是预处理靛蓝牛仔布印染废水的一种有效方法,在Fe/C为2:1、pH为3的条件下反应90 min,铁炭微电解出水COD的去除率在49.2%,色度去除率达到80%,该印染废水经微电解处理后,BOD5/COD比值可从原来的0.248上升至0.436,可生化性明显提高.此外,微电解预处理靛蓝牛仔布印染废水中COD的去除反应符合二级反应动力学规律.  相似文献   
889.
采用Fenton氧化法对青霉素和土霉素混合废水二级处理出水进行深度处理,通过正交和单因素实验研究了废水初始反应pH值、H2O2投加量、Fe2+/H2O2摩尔比及反应时间等因素对废水处理效果的影响。实验结果表明,Fenton氧化法处理的最佳反应条件为:初始pH值4、H2O2(30%)投加量50 mL/L、Fe2+/H2O2摩尔比1/20和反应时间60 min,处理后出水COD小于120 mg/L,COD去除率在75%以上,急性毒性(HgCl2毒性当量)小于0.07 mg/L,满足《发酵类制药工业水污染物排放标准》(GB21903-2008)表2标准要求。  相似文献   
890.
工业废水中多金属离子的吸附净化   总被引:3,自引:1,他引:2  
以含有Si、Al、Ca、C元素的矿物材料作为基质,经特定条件处理后造粒成型加工成轻质多孔Si-Al-Ca-C结构的吸附材料。研究了该吸附材料对工业废水中多种金属离子的吸附性能,探讨了影响吸附性能的因素。研究结果表明,在一定条件下,Si-Al-Ca-C吸附材料对工业废水中Al3+、Ca2+、Mn2+、Cu2+、Fe3+、Mg2+、As3+和Zn2+的净化率分别高达99.34%、99.82%、98.26%、98.16%、97.76%、97.01%、100%和89.09%。金属离子残留浓度分别为0.152、0.07、0.012、0.02、0.119、0.311、0和0.259 mg/L,均低于国家污水综合排放标准(GB8978-1996)一级标准。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号