首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   34篇
  国内免费   57篇
安全科学   19篇
废物处理   3篇
环保管理   175篇
综合类   218篇
基础理论   100篇
污染及防治   21篇
评价与监测   30篇
社会与环境   52篇
灾害及防治   14篇
  2024年   2篇
  2023年   7篇
  2022年   14篇
  2021年   15篇
  2020年   13篇
  2019年   18篇
  2018年   15篇
  2017年   21篇
  2016年   27篇
  2015年   31篇
  2014年   23篇
  2013年   29篇
  2012年   25篇
  2011年   33篇
  2010年   23篇
  2009年   45篇
  2008年   36篇
  2007年   44篇
  2006年   40篇
  2005年   33篇
  2004年   23篇
  2003年   19篇
  2002年   17篇
  2001年   18篇
  2000年   9篇
  1999年   22篇
  1998年   2篇
  1997年   7篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1992年   1篇
  1991年   1篇
  1990年   6篇
  1988年   1篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
排序方式: 共有632条查询结果,搜索用时 125 毫秒
61.
ABSTRACT

Deforestation driven by agricultural expansion is a major threat to the biodiversity of the Amazon Basin. Modelling how deforestation responds to environmental policy implementation has thus become a policy relevant scientific undertaking. However, empirical parameterization of land-use/cover change (LUCC) models is challenging due to the high complexity and uncertainty of land-use decisions. Bayesian Network (BN) modelling provides an effective framework to integrate various data sources including expert knowledge. In this study, we integrate remote sensing products with data from farm-household surveys and a decision game to model LUCC at the BR-163, in Brazil. Our ‘business as usual’ scenario indicates cumulative forest cover loss in the study region of 8,000 km2 between 2014 and 2030, whereas ‘intensified law-enforcement’ would reduce cumulative deforestation to 1,600 km2 over the same time interval. Our findings underline the importance of conservation law enforcement in modulating the impact of agricultural market incentives on land cover change.  相似文献   
62.
森林土地利用变化及其对碳循环的影响   总被引:5,自引:0,他引:5  
周剑芬  管东生 《生态环境》2004,13(4):674-676
由于人口剧增,人类活动的影响不断加大,在过去100年全球土地利用/土地覆被发生了巨大的变化。最常见的土地利用变化是由森林转变为农业用地。森林砍伐使森林生态系统地上部生物量大大减少,砍伐后作农业用地,降低了植被生产力,减少了土壤有机质的输入,增强了腐殖质的矿化作用,有机质分解速率增加,有机碳贮量随之降低,从而影响到森林生态系统的碳循环,使大量碳元素释放到大气中,引起温室效应,导致全球变暖。另一个常见的土地利用变化是植树造林和森林恢复,这一过程可以增加森林生态系统的碳储量,从而减缓大气CO2体积分数的上升。  相似文献   
63.
介绍了侧联式球磨机噪声产生原理及其噪声控制方法,选择了制作局部式隔声罩的噪声控制设计和装置结构.在中国铝业中州分公司热电厂球磨机上应用,取得了很好的隔声效果.  相似文献   
64.
Chronosequences are useful to evaluate long-term changes in ecosystem services but assessing groundwater quality changes using this approach has rarely been done. In this study, groundwater level and quality comparisons were made in a watershed-scale reconstructed prairie chronosequence that extended back in time approximately 13 years at the Neal Smith National Wildlife Refuge (NSNWR) near Prairie City, Iowa. Our objectives were to determine whether groundwater conditions varied significantly across the chronosequence and quantify the rate of nitrate concentration reduction when row crop fields are replaced by prairie. We installed 19 groundwater wells at upland locations selected to provide similar soil type, landscape position and slope. Water samples were collected on five occasions in 2006 and 2007 and analyzed for field parameters, anions and NO3-N, NH4-N and PO4-P. Significant groundwater changes were primarily associated with groundwater levels, and groundwater nitrate and chloride concentrations. The groundwater was deeper under the older prairie plantings but fluctuated similarly among all well sites. Groundwater nitrate and chloride concentrations decreased 0.58 and 0.52 mg/l per year over the 13-year chronosequence, respectively. Results are seen to provide some guidance to land managers regarding possible nitrate concentration reductions achievable from converting cropland to perennial land cover in similar geomorphic settings.  相似文献   
65.
The Ganges Delta in Bangladesh is an example of water‐related catastrophes in a major rural river basin where limitations in quantity, quality, and timing of available water are producing disastrous conditions. Water availability limitations are modifying the hydrologic characteristics especially when water allocation is controlled from the upstream Farakka Barrage. This study presents the changes and consequences in the hydrologic regime due to climate‐ and human‐induced stresses. Flow duration curves (FDCs), rainfall elasticity, and temperature sensitivity were used to assess the pre‐ and post‐barrage water flow patterns. Hydrologic and climate indices were computed to provide insight on hydro‐climatic variability and trend. Significant increases in temperature, evapotranspiration, hot days, heating, and cooling degree days indicate the region is heading toward a warmer climate. Moreover, increase in high‐intensity rainfall of short duration is making the region prone to extreme floods. FDCs depict a large reduction in river flows between pre‐ and post‐barrage periods, resulting in lower water storage capacity. The reduction in freshwater flow increased the extent and intensity of salinity intrusion. This freshwater scarcity is reducing livelihood options considerably and indirectly forcing population migration from the delta region. Understanding the causes and directions of hydrologic changes is essential to formulate improve water resources management in the region.  相似文献   
66.
Anticipating changes in hydrologic variables is essential for making socioeconomic water resource decisions. This study aims to assess the potential impact of land use and climate change on the hydrologic processes of a primarily rain‐fed, agriculturally based watershed in Missouri. A detailed evaluation was performed using the Soil and Water Assessment Tool for the near future (2020–2039) and mid‐century (2040–2059). Land use scenarios were mapped using the Conversion of Land Use and its Effects model. Ensemble results, based on 19 climate models, indicated a temperature increase of about 1.0°C in near future and 2.0°C in mid‐century. Combined climate and land use change scenarios showed distinct annual and seasonal hydrologic variations. Annual precipitation was projected to increase from 6% to 7%, which resulted in 14% more spring days with soil water content equal to or exceeding field capacity in mid‐century. However, summer precipitation was projected to decrease, a critical factor for crop growth. Higher temperatures led to increased potential evapotranspiration during the growing season. Combined with changes in precipitation patterns, this resulted in an increased need for irrigation by 38 mm representing a 10% increase in total irrigation water use. Analysis from multiple land use scenarios indicated converting agriculture to forest land can potentially mitigate the effects of climate change on streamflow, thus ensuring future water availability.  相似文献   
67.
The potential impacts driven by climate variability and urbanization in the Boise River Watershed (BRW), located in southwestern Idaho, are evaluated. The outcomes from Global Circulation Models (GCMs) and land use and land cover (LULC) analysis have been incorporated into a hydrological and environmental modeling framework to characterize how climate variability and urbanization can affect the local hydrology and environment at the BRW. The combined impacts of future climate and LULC change are also evaluated relative to the historical baseline conditions. For modeling exercises, Hydrological Simulation Program‐Fortran (HSPF) is used in parallel computing and statistical techniques, including spatial downscaling and bias correlation, are employed to evaluate climate consequences derived from GCMs as well. The implications of climate variability and land use change driven by urbanization are then observed to evaluate how these overall global challenges can affect water quantity and quality conditions at the BRW. The results show the combined impacts of both climate change and urbanization can lead to more seasonal variability of streamflow (from ?27.5% to 12.5%) and water quality, including sediment (from ?36.5% to 49.3%), nitrogen (from ?24% to 124.2%), and phosphorus (from ?13.3% to 21.2%) during summer and early fall over the next several decades.  相似文献   
68.
In the present study, a trapezoidal salt-gradient solar pond (TSGSP) has been investigated experimentally. The top surface of solar pond has been covered with double-glass cover in order to reduce the evaporative and convective losses from the top. This results in increase of temperature even in the top zone of the solar pond and leads to more volume utilization for heat storage in the pond. A reflector made of aluminium sheet has been used to enhance the solar intensity on the solar pond during sunny hours. A procedure, to determine optimum tilt angle of reflector in order to utilize maximum amount of solar energy at noon, has been proposed. The use of reflector enhanced the average solar intensity on the top surface of solar pond by 22%. The maximum average temperature of trapezoidal solar pond with glass cover and reflector has been observed to be 70.5°C. The thermal efficiencies of LCZ, NCZ and UCZ for the trapezoidal solar pond with double-glass cover and reflector have been estimated to be 32.73%, 23.22% and 5.30%, respectively. In addition to experimental investigation, the sunny area ratio of TSGSP has been theoretically computed and compared with the cuboid solar pond having same top surface area and depth in order to see the effect of pond shape on sunny area ratio. The average yearly sunny area ratio of trapezoidal solar pond has been determined to be 11% higher than that of cuboid one.  相似文献   
69.
/ Management problems arise in semiarid rangeland that are characterized by marked wet and dry seasons because of forage deficiencies in the dry season. These natural vegetation rangelands can sustain livestock all year long when forage and senesced grass are available into the dry season. Seasonal range condition data are required to provide a basis for pasture management to help locate dry season cover and thereby minimize overstocking and degradation. The generation of seasonal data using Thematic Mapper (TM) imagery was undertaken to assess changes in natural vegetation cover in the southern Botswana Kalahari. Visual analysis of spectral reflectance curves, the development of spectral separability indexes, and conventional classification analysis techniques were used to identify and differentiate rangeland features. Results from reflectance curves indicated that most rangeland cover types could be preferentially distinguished using mainly wet season data, especially on the longer TM wavebands, and that range feature differentiation was more problematic on darker soils than on lighter soils. Spectral separability indexes (SSIs) confirmed that range feature separation varied considerably as a function of waveband and was more effective in the wet than the dry season. The SSIs also showed that range feature differentiation in both seasons was most effective using a combination of the chlorophyll absorpance band (TM3) and two mid-infrared bands (TM5 and TM7). Wet season data were more effectively classified in terms of range features than dry season data although some class similarity was inferred across the two classified data sets. The work shows that overall trends may be generated by comparing seasonal data sets, thereby providing an overall basis for dry season decision making. However, particular problems arise within the dry season data sets probably because of spectral similarities between shadow and darkened vegetation cover, thereby implying that further work is needed. KEY WORDS: Semiarid rangelands; Botswana; Kalahari; Spectral differentiation; Seasonal change; Darkened vegetation cover  相似文献   
70.
硬化路面与温度场响应模型研究   总被引:1,自引:0,他引:1  
硬化路面是城市热环境效应影响因素中较为重要的一个因素.笔者在研究了深圳市城市热效应的基础上,建立了一个三维动态模型对硬化路面条件下的温度场进行模拟.通过将模型的计算结果和在深圳的实测结果进行对比,发现2条曲线吻合较好,模拟结果十分接近实测结果.模型模拟结果还证明了硬化路面由于铺筑的材料具有较大蓄热、导热的能力,而且透水性差,因此温度升降都很快,对城市的热效应贡献大;城市绿化隔离带对城市温度场具有很好的调节作用,因此合理配置城市中的绿地对城市区域微热环境的改善能够起到很好的作用.   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号