Air pollution has assumed gigantic proportion killing almost half a million Asians every year. Urban pollution mainly comprises
of emissions from buses, trucks, motorcycle other forms of motorized transport and its supporting activities. As Asia's cities
continue to expand the number of vehicles have risen resulting in greater pollution. Fugitive emissions from retail distribution
center in urban area constitute a major source. Petrol vapours escape during refueling adding pollutants like benzene, toluene,
ethylbenzene and xylene to ambient air. This paper discusses a study on fugitive emissions of Volatile Organic Compounds (VOC)
at some refueling station in two metropolitan cities of India, i.e., Mumbai and Delhi. Concentration of VOCs in ambient air
at petrol retail distribution center is estimated by using TO-17 method. Concentration of benzene in ambient air in Delhi
clearly shows the effect of intervention in use of petroleum and diesel fuel and shift to CNG. Chemical Mass Balance (CMB)
model is used to estimate source contributions. At Delhi besides diesel combustion engines, refueling emissions are also major
sources. At Mumbai evaporative emissions are found to contribute maximum to Total VOC (TVOC) concentration in ambient air. 相似文献
将模糊综合评价法与层次分析法相结合,建立基于AHP—模糊综合评价模型,并探讨基于AHP—模糊综合评价方法在离心泵安全评价方面的应用。根据离心泵系统的结构、实际运行情况、常见故障模型及历史故障数据建立安全评价指标体系,结合层次分析法确定矩阵权重值,确定单级模糊综合评价结果;利用上述评价结果,可以进行多级模糊综合评价,最后得出离心泵的安全等级。此外,应用Microsoft Visual Studio 2008软件开发工具和Matlab数学软件编制评价程序,提高实用性。 相似文献
ABSTRACT An eQUEST model was developed to conduct a simulation study of a natural gas engine-driven heat pump (GEHP) for an office building in Woodstock, Ontario, Canada. Prior to the installation of the GEHP, the heating and cooling demands of the office building were provided by rooftop units (RTUs), comprising of natural gas heater and electric air conditioner. Energy consumption for both GEHP and RTUs were monitored for operation in alternating months. These recorded energy consumptions along with weather data were used in the regression analysis. The developed eQUEST models were validated and calibrated with the regression analysis results with respect to the ASHRAE Guideline 14–2014. The eventual models were then applied to investigate the potential annual energy consumption, greenhouse gas (GHG) emission and energy cost savings achieved by using the GEHP in Woodstock, and other cities in Canada, particularly in Ontario. 相似文献
ABSTRACT Refrigerant pressure drop and temperature change in pipes are normally ignored in the thermodynamic analysis of traditional vehicle air conditioning system, this will result in serious errors. In this Paper, pressure drop and temperature difference are simulated in different pipes of electric vehicle (EV) heat pump system to analysis the effects of pipes in the actual EV heat pump system. The results indicate that the greater the mass flow, the faster pressure drop increases, the temperature difference decreases. Pressure drop of saturated liquid refrigerant is smaller than that of saturated gas refrigerant at the same saturation pressure and mass flow rate. The higher the refrigerant pressure (no phase change), the slower pressure drop decreases, the faster the temperature difference decreases. Pressure drop decreases with the increment of bending angle of the pipe. For EV heat pump system, suitable valves and less branches are helpful for energy saving of the system. Shortening the pipe between compressor and condenser can reduce temperature change obviously. Pressure drop per unit length in the pipe between evaporator and compressor is large especially in heating mode because of lower refrigerant density. It even reaches to over 100 times of that in the pipe between condenser and throttle valve in heating mode and has negative effects on the performance of the system. If the evaporator is closer to the compressor and the number of branches is less, then pressure drop will decrease a lot, which will be advantageous for energy saving of the heat pump system. 相似文献
Water quality monitoring programs across multiple disciplines use total suspended solids (TSS), and volatile suspended solids (VSS), to assess potential impairments of surface water and groundwater. While previous methods for instream filtering have been developed, the need for rapid, cost‐effective, high volume sampling has increased with the need to verify and supplement data produced by sondes and instantaneous data loggers. We present an efficient method to filter water instream with a portable drill pump that results in reduced sample processing time, and potentially reduced error associated with sample transportation, preservation, contamination, and homogenization. This technical note outlines the advantages of filtering instream vs. in the laboratory. It also compares TSS and VSS concentrations filtered with a drill pump vs. standard filtration methods with a vacuum pump as outlined by USEPA methods 160.2 and 160.4. Samples were collected at 4 sites and filtered in the field, or transported to the laboratory and filtered within 12 or 24 h of collection. Overall TSS and VSS samples filtered instream with a drill pump vs. in the laboratory produced similar concentrations with a similar range in variability for each method. Sample filtering with a drill pump decreased processing time by five minutes per sample. 相似文献
Objective: The purpose of this study was to identify and better understand the features of fatal injuries in cyclists aged 75 years and over involved in collisions with either hood- or van-type vehicles.
Methods: This study investigated the fatal injuries of cyclists aged 75 years old and over by analyzing accident data. We focused on the body regions to which the fatal injury occurred using vehicle–bicycle accident data from the Institute for Traffic Accident Research and Data Analysis (ITARDA) in Japan. Using data from 2009 to 2013, we examined the frequency of fatally injured body region by gender, age, and actual vehicle travel speed. We investigated any significant differences in distributions of fatal injuries by body region for cyclists aged 75 years and over using chi-square tests to compare with cyclists in other age groups. We also investigated the cause of fatal head injuries, such as impact with a road surface or vehicle.
Results: The results indicated that head injuries were the most common cause of fatalities among the study group. At low vehicle travel speeds for both hood- and van-type vehicles, fatalities were most likely to be the result of head impacts against the road surface.
The percentage of fatalities following hip injuries was significantly higher for cyclists aged 75 years and over than for those aged 65–74 or 13–59 in impacts with hood-type vehicles. It was also higher for women than men in the over-75 age group in impacts with these vehicles.
Conclusions: For cyclists aged 75 years and over, wearing a helmet may be helpful to prevent head injuries in vehicle-to-cyclist accidents. It may also be helpful to introduce some safety measures to prevent hip injuries, given the higher level of fatalities following hip injury among all cyclists aged 75 and over, particularly women. 相似文献