In this article we apply and test a methodology to estimate cumulative frequency distribution for air pollutant concentration from wind-speed data. We use the inverse relationship after Simpson et al. (Atmospheric Environment, 19, 75–82, 1985) between the opposing percentile values in the statistical distributions for air pollutant concentrations and wind-speed data. This relationship is valid, irrespective of the statistical distributions of both variables, if an inverse relationship between them is also applicable. The available data are five years of 8-h average carbon monoxide concentration and 8-h mean wind-speed, observed in Buenos Aires (Argentina). The performance of the obtained empirical expressions in estimating cumulative frequency distributions for 8-h CO is statistically evaluated. The results show that it is possible to obtain an acceptable cumulative frequency distribution for 8-h CO concentration at the site if the cumulative frequency distribution for wind-speed is known. Q–Q plots show a good agreement between estimated and observed values. From our data, the mean relative error of the estimations was found to be as much as 8.0%. 相似文献
Abstract: Few studies exist that evaluate or apply pesticide transport models based on measured parent and metabolite concentrations in fields with subsurface drainage. Furthermore, recent research suggests pesticide transport through exceedingly efficient direct connections, which occur when macropores are hydrologically connected to subsurface drains, but this connectivity has been simulated at only one field site in Allen County, Indiana. This research evaluates the Root Zone Water Quality Model (RZWQM) in simulating the transport of a parent compound and its metabolite at two subsurface drained field sites. Previous research used one of the field sites to test the original modification of the RZWQM to simulate directly connected macropores for bromide and the parent compound, but not for the metabolite. This research will evaluate RZWQM for parent/metabolite transformation and transport at this first field site, along with evaluating the model at an additional field site to evaluate whether the parameters for direct connectivity are transferable and whether model performance is consistent for the two field sites with unique soil, hydrologic, and environmental conditions. Isoxaflutole, the active ingredient in BALANCE® herbicide, was applied to both fields. Isoxaflutole rapidly degrades into a metabolite (RPA 202248). This research used calibrated RZWQM models for each field based on observed subsurface drain flow and/or edge of field conservative tracer concentrations in subsurface flow. The calibrated models for both field sites required a portion (approximately 2% but this fraction may require calibration) of the available water and chemical in macropore flow to be routed directly into the subsurface drains to simulate peak concentrations in edge of field subsurface drain flow shortly after chemical applications. Confirming the results from the first field site, the existing modification for directly connected macropores continually failed to predict pesticide concentrations on the recession limbs of drainage hydrographs, suggesting that the current strategy only partially accounts for direct connectivity. Thirty‐year distributions of annual mass (drainage) loss of parent and metabolite in terms of percent of isoxaflutole applied suggested annual simulated percent losses of parent and metabolite (3.04 and 1.31%) no greater in drainage than losses in runoff on nondrained fields as reported in the literature. 相似文献
ABSTRACT: The U.S. Geological Survey (USGS) has compiled a national retrospective data set of analyses of volatile organic compounds (VOCs) in ground water of the United States. The data are from Federal, State, and local nonpoint‐source monitoring programs, collected between 1985–95. This data set is being used to augment data collected by the USGS National Water‐Quality Assessment (NAWQA) Program to ascertain the occurrence of VOCs in ground water nationwide. Eleven attributes of the retrospective data set were evaluated to determine the suitability of the data to augment NAWQA data in answering occurrence questions of varying complexity. These 11 attributes are the VOC analyte list and the associated reporting levels for each VOC, well type, well‐casing material, type of openings in the interval (screened interval or open hole), well depth, depth to the top and bottom of the open interval(s), depth to water level in the well, aquifer type (confined or unconfined), and aquifer lithology. VOCs frequently analyzed included solvents, industrial reagents, and refrigerants, but other VOCs of current interest were not frequently analyzed. About 70 percent of the sampled wells have the type of well documented in the data set, and about 74 percent have well depth documented. However, the data set generally lacks documentation of other characteristics, such as well‐casing material, information about the screened or open interval(s), depth to water level in the well, and aquifer type and lithology. For example, only about 20 percent of the wells include information on depth to water level in the well and only about 14 percent of the wells include information about aquifer type. The three most important enhancements to VOC data collected in nonpoint‐source monitoring programs for use in a national assessment of VOC occurrence in ground water would be an expanded VOC analyte list, recording the reporting level for each analyte for every analysis, and recording key ancillary information about each well. These enhancements would greatly increase the usefulness of VOC data in addressing complex occurrence questions, such as those that seek to explain the reasons for VOC occurrence and nonoccurrence in ground water of the United States. 相似文献
ABSTRACT: A small lake in the Chicago Metropolitan Area was from 91 to 95 percent efficient in removing suspended sediment and from 76 to 94 percent efficient in removing copper, iron, lead, and zinc from urban runoff. Sediments accumulated in the lake in the form of an organic-rich mud at an average rate of 20 millimeters per year; this reduced lake storage and covered potential habitat for aquatic organisms. Copper, lead, and zinc concentrations were closely associated with suspended-sediment concentrations and with silt- and clay-sized fractions of lake sediment. Although concentrations of mercury and cadmium were near detection limits in runoff, measurable concentrations of these metals accumulated in the lake sediments. 相似文献
On-going population growth and resulting domestic demand for water require rapid and effective decision-making as regards groundwater management and control of the various sources of salinization and pollution in Coastal aquifers. Sustainability of water resources for utilization by future generations must therefore be a high priority, not only for the purpose of fulfilling needs for water usage but also for bringing people into harmony with their ambient natural environment.The objective of this paper is to propose an empirical approach for prioritization of the needs involved for sustainable aquifer management. The approach involves a schematic format to:(1) develop a global understanding of an aquifer's hydrological and environmental properties in order to delineate appropriate eco-hydrological scenarios and recommend corresponding operational management activities; and(2) emphasize the importance of educating and increasing the awareness of the population involved as to the need for and viability of socially acceptable measures for sustainable management of groundwater and other resources.The psychologist Abraham Maslow utilized a pyramid to illustrate that until people's most basic needs were fulfilled, higher levels of needs would remain irrelevant. This paper postulates a comparable pyramid prioritizing hydrological needs required for progressing towards sustainable groundwater resources. Two sub-regions of Israel's Coastal aquifer in the Sharon region have been presented as representative areas, each characterized by different stress of exploitation. In assessing these sub-regions situation, specific measures have been recommended for achieving and/or maintaining sustainable groundwater resources in light of the ambient environment, and the level of the population on the pyramidal hierarchy of groundwater needs. 相似文献