首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   68篇
  国内免费   23篇
安全科学   8篇
废物处理   6篇
环保管理   732篇
综合类   59篇
基础理论   17篇
污染及防治   2篇
评价与监测   12篇
社会与环境   10篇
灾害及防治   2篇
  2023年   10篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   14篇
  2017年   26篇
  2016年   18篇
  2015年   20篇
  2014年   15篇
  2013年   20篇
  2012年   24篇
  2011年   20篇
  2010年   19篇
  2009年   22篇
  2008年   17篇
  2007年   30篇
  2006年   23篇
  2005年   25篇
  2004年   41篇
  2003年   34篇
  2002年   30篇
  2001年   29篇
  2000年   27篇
  1999年   33篇
  1998年   35篇
  1997年   24篇
  1996年   41篇
  1995年   18篇
  1994年   19篇
  1993年   15篇
  1992年   14篇
  1991年   19篇
  1990年   10篇
  1989年   8篇
  1988年   7篇
  1987年   14篇
  1986年   4篇
  1985年   8篇
  1983年   4篇
  1982年   14篇
  1981年   7篇
  1980年   15篇
  1979年   6篇
  1978年   7篇
  1976年   4篇
  1975年   8篇
  1973年   5篇
  1972年   6篇
  1971年   8篇
  1970年   2篇
排序方式: 共有848条查询结果,搜索用时 0 毫秒
101.
ABSTRACT: To better understand the flow processes, solute-trans. port processes, and ground-water/surface-water interactions on the Santa Clara River in Ventura County, California, a 24-hour fluorescent-dye tracer study was performed under steady-state flow conditions on a 45-km reach of the river. The study reach includes perennial (uppermost and lowermost) subreaches and ephemeral subreaches of the lower Piru Creek and the middle Santa Clara River. The tracer-test data were used to calibrate a one-dimensional flow model (DAFLOW) and a solute-transport model (BLTM). The dye-arrival times at each sample location were simulated by calibrating the velocity parameters in DAFLOW. The simulations of dye transport indicated that (1) ground-water recharge explains the loss of mass in the ephemeral middle subreaches, and (2) ground-water recharge does not explain the loss of mass in the perennial uppermost and lowermost subreaches. The observed tracer curves in the perennial subreaches were indicative of sorptive dye losses, transient storage, and (or) photodecay - these phenomena were simulated using a linear decay term. However, analysis of the linear decay terms indicated that photodecay was not a dominant source of dye loss.  相似文献   
102.
Road-related erosion was estimated by measuring 100 randomly located plots on a 180 km road network in the middle reach of R'dwood Creek in northwestern California. The estimated erosion ratn of 177 m3 km-1 was contrasted with two earlier studies in nearby parts of the same watershed. A sizable proportion of the great reduction in erosion from that reported in the earlier studies is attributed to changes in forest practice rules. Those changes have resulted in better placement and sizing of culverts and, especially, to less reliance on culverts to handle runoff from logging roads.  相似文献   
103.
ABSTRACT: Discrete cold water patches within the surface waters of summer warm streams afford potential thermal refuge for cold water fishes during periods of heat stress. This analysis focused on reach scale heterogeneity in water temperatures as influenced by local influx of cooler subsurface waters. Using field thermal probes and recording thermistors, we identified and characterized cold water patches (at least 3°C colder than ambient streamflow temperatures) potentially serving as thermal refugia for cold water fishes. Among 37 study sites within alluvial valleys of the Grande Ronde basin in northeastern Oregon, we identified cold water patches associated with side channels, alcoves, lateral seeps, and floodplain spring brooks. These types differed with regard to within floodplain position, area, spatial thermal range, substrate, and availability of cover for fish. Experimental shading cooled daily maximum temperatures of surface waters within cold water patches 2 to 4°C, indicating a strong influence of riparian vegetation on the expression of cold water patch thermal characteristics. Strong vertical temperature gradients associated with heating of surface layers of cold water patches exposed to solar radiation, superimposed upon vertical gradients in dissolved oxygen, can partially restrict suitable refuge volumes for stream salmonids within cold water patches.  相似文献   
104.
This study explores the viability of using simulated monthly runoff as a proxy for landscape‐scale surface‐depression storage processes simulated by the United States Geological Survey’s National Hydrologic Model (NHM) infrastructure across the conterminous United States (CONUS). Two different temporal resolution model codes (daily and monthly) were run in the NHM with the same spatial discretization. Simulated values of daily surface‐depression storage (treated as a decimal fraction of maximum volume) as computed by the daily Precipitation‐Runoff Modeling System (NHM‐PRMS) and normalized runoff (0 to 1) as computed by the Monthly Water Balance Model (NHM‐MWBM) were aggregated to monthly and annual values for each hydrologic response unit (HRU) in the CONUS geospatial fabric (HRU; n = 109,951) and analyzed using Spearman’s rank correlation test. Correlations between simulated runoff and surface‐depression storage aggregated to monthly and annual values were compared to identify where which time scale had relatively higher correlation values across the CONUS. Results show Spearman’s rank values >0.75 (highly correlated) for the monthly time scale in 28,279 HRUs (53.35%) compared to the annual time scale in 41,655 HRUs (78.58%). The geographic distribution of HRUs with highly correlated monthly values show areas where surface‐depression storage features are known to be common (e.g., Prairie Pothole Region, Florida).  相似文献   
105.
ABSTRACT: Excessive nitrate‐nitrogen (nitrate) export from the Raccoon River in west central Iowa is an environmental concern to downstream receptors. The 1972 to 2000 record of daily streamflow and the results from 981 nitrate measurements were examined to describe the relation of nitrate to streamflow in the Raccoon River. No long term trends in streamflow and nitrate concentrations were noted in the 28‐year record. Strong seasonal patterns were evident in nitrate concentrations, with higher concentrations occurring in spring and fall. Nitrate concentrations were linearly related to streamflow at daily, monthly, seasonal, and annual time scales. At all time scales evaluated, the relation was improved when baseflow was used as the discharge variable instead of total streamflow. Nitrate concentrations were found to be highly stratified according to flow, but there was little relation of nitrate to streamflow within each flow range. Simple linear regression models developed to predict monthly mean nitrate concentrations explained as much as 76 percent of the variability in the monthly nitrate concentration data for 2001. Extrapolation of current nitrate baseflow relations to historical conditions in the Raccoon River revealed that increasing baseflow over the 20th century could account for a measurable increase in nitrate concentrations.  相似文献   
106.
Abstract: We proposed a step‐by‐step approach to quantify the sensitivity of ground‐water discharge by evapotranspiration (ET) to three categories of independent input variables. To illustrate the approach, we adopt a basic ground‐water discharge estimation model, in which the volume of ground water lost to ET was computed as the product of the ground‐water discharge rate and the associated area. The ground‐water discharge rate was assumed to equal the ET rate minus local precipitation. The objective of this study is to outline a step‐by‐step procedure to quantify the contributions from individual independent variable uncertainties to the uncertainty of total ground‐water discharge estimates; the independent variables include ET rates of individual ET units, areas associated with the ET units, and precipitation in each subbasin. The specific goal is to guide future characterization efforts by better targeting data collection for those variables most responsible for uncertainty in ground‐water discharge estimates. The influential independent variables to be included in the sensitivity analysis are first selected based on the physical characteristics and model structure. Both regression coefficients and standardized regression coefficients for the selected independent variables are calculated using the results from sampling‐based Monte Carlo simulations. Results illustrate that, while as many as 630 independent variables potentially contribute to the calculation of the total annual ground‐water discharge for the case study area, a selection of seven independent variables could be used to develop an accurate regression model, accounting for more than 96% of the total variance in ground‐water discharge. Results indicate that the variability of ET rate for moderately dense desert shrubland contributes to about 75% of the variance in the total ground‐water discharge estimates. These results point to a need to better quantify ET rates for moderately dense shrubland to reduce overall uncertainty in estimates of ground‐water discharge. While the approach proposed here uses a basic ground‐water discharge model taken from an earlier study, the procedure of quantifying uncertainty and sensitivity can be generalized to handle other types of environmental models involving large numbers of independent variables.  相似文献   
107.
ABSTRACT: Historical trends in annual discharge characteristics were evaluated for 11 gauging stations located throughout Iowa. Discharge records from nine eight‐digit hydrologic unit code (HUC‐8) watersheds were examined for the period 1940 to 2000, whereas data for two larger river systems (Cedar and Des Moines Rivers) were examined for a longer period of record (1903 to 2000). In nearly all watersheds evaluated, annual base flow, annual minimum flow, and the annual base flow percentage significantly increased over time. Some rivers also exhibited increasing trends in total annual discharge, whereas only the Maquoketa River had significantly decreased annual maximum flows. Regression of stream discharge versus precipitation indicated that more precipitation is being routed into streams as base flow than as storm flow in the second half of the 20th Century. Reasons for the observed stream flow trends are hypothesized to include improved conservation practices, greater artificial drainage, increasing row crop production, and channel incision. Each of these reasons is consistent with the observed trends, and all are likely responsible to some degree in most watersheds.  相似文献   
108.
Snow is an important component of the hydrologic cycle for many regions worldwide. In addition to vital water resources, snowmelt can be important for forest ecosystem dynamics and flood risk. However, standard design events in the United States lack a design snowmelt event, including only precipitation events, though snowmelt has been shown to be larger than rainfall. In this article, we present a method using hourly snow water equivalent data to develop and test a function for representing the diurnal pattern of snowmelt. A two‐parameter beta distribution function is modified for the purposes of this study and found to fit the pattern of snowmelt well with a root mean squared error of 0.008. Soil moisture sensors were additionally utilized to assess the timing of the snowmelt water outflow from the base of the snowpack that supports the shape of the function, but suggests that the timing of losses recorded on snow pillows lag as much as 3 h. Further testing of the function showed the shape of the function to be accurate. The methods developed and tested in this paper can be applied for design purposes comparing snowmelt and rainfall events or to improve hydrological models investigating processes such as streamflow or groundwater recharge.  相似文献   
109.
ABSTRACT: The sensitivity of streamflow to climate change was investigated in the American, Carson, and Truckee River Basins, California and Nevada. Nine gaging stations were used to represent streamflow in the basins. Annual models were developed by regressing 1961–1991 streamflow data on temperature and precipitation. Climate-change scenarios were used as inputs to the models to determine streamflow sensitivities. Climate-change scenarios were generated from historical time series by modifying mean temperatures by a range of +4°C to—4°C and total precipitation by a range of +25 percent to -25 percent. Results show that streamflow on the warmer, lower west side of the Sierra Nevada generally is more sensitive to temperature and precipitation changes than is streamflow on the colder, higher east side. A 2°C rise in temperature and a 25-percent decrease in precipitation results in stream-flow decreases of 56 percent on the American River and 25 percent on the Carson River. A 2°C decline in temperature and a 25-percent increase in precipitation results in streamflow increases of 102 percent on the American River and 22 percent on the Carson River.  相似文献   
110.
Boggs, Kevin G., Robert W. Van Kirk, Gary S. Johnson, Jerry P. Fairley, and P. Steve Porter, 2010. Analytical Solutions to the Linearized Boussinesq Equation for Assessing the Effects of Recharge on Aquifer Discharge. Journal of the American Water Resources Association (JAWRA) 46(6):1116–1132. DOI: 10.1111/j.1752-1688.2010.00479.x Abstract: There is a need to develop a general understanding of how variations in aquifer recharge are reflected in discharge. Analytical solutions to the linearized Boussinesq equation governing flow in an unconfined aquifer provide a unified mathematical framework to quantify relationships among lag time, attenuation and distance between aquifer recharge and discharge and the effect of an up-gradient no-flow boundary. We applied this framework to three types of recharge: (1) instantaneous, (2) periodic, and (3) constant rate for a finite duration. When the temporal scale of recharge exceeds the diffusive aquifer time scale, recharge will be reflected in discharge quickly and with little attenuation. When aquifer time scale is large, most recharge events are shorter in scale than that of the aquifer, resulting in large attenuation. Attenuation is more sensitive to boundary effects than lag time, and boundary effects increase as recharge time scale increases. Boundary effects can often be ignored when the recharge source is farther than 1/3 of the domain length away from the no-flow boundary. We illustrate analytical results with application to the economically critical Eastern Snake River Plain Aquifer in Idaho. In this aquifer, detectable annual and decadal cycles in discharge can result from recharge no farther than 20 and 60 km away from the discharge point, respectively. The effects of more distant, long-term recharge can be detected only after a time lag of several decades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号