首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   757篇
  免费   68篇
  国内免费   22篇
安全科学   8篇
废物处理   6篇
环保管理   732篇
综合类   59篇
基础理论   17篇
污染及防治   1篇
评价与监测   12篇
社会与环境   10篇
灾害及防治   2篇
  2023年   10篇
  2021年   6篇
  2020年   5篇
  2019年   10篇
  2018年   14篇
  2017年   26篇
  2016年   17篇
  2015年   20篇
  2014年   15篇
  2013年   20篇
  2012年   24篇
  2011年   20篇
  2010年   19篇
  2009年   22篇
  2008年   17篇
  2007年   30篇
  2006年   23篇
  2005年   25篇
  2004年   41篇
  2003年   34篇
  2002年   30篇
  2001年   29篇
  2000年   27篇
  1999年   33篇
  1998年   35篇
  1997年   24篇
  1996年   41篇
  1995年   18篇
  1994年   19篇
  1993年   15篇
  1992年   14篇
  1991年   19篇
  1990年   10篇
  1989年   8篇
  1988年   7篇
  1987年   14篇
  1986年   4篇
  1985年   8篇
  1983年   4篇
  1982年   14篇
  1981年   7篇
  1980年   15篇
  1979年   6篇
  1978年   7篇
  1976年   4篇
  1975年   8篇
  1973年   5篇
  1972年   6篇
  1971年   8篇
  1970年   2篇
排序方式: 共有847条查询结果,搜索用时 421 毫秒
741.
Abstract: Nonpoint source pollution, which contributes to contamination of surface waters, is difficult to control. Some pollutants, particularly nitrate (), are predominantly transmitted through ground water. Riparian buffer zones have the potential to remove contaminants from ground water and reduce the amount of that enters surface water. This is a justification for setting aside vegetated buffer strips along waterways. Many riparian zone hydrologic models assume uniform ground‐water flow through organic‐rich soil under reducing conditions, leading to effective removal of ground‐water prior to discharge into a stream. However, in a small first‐order stream in the mid‐Atlantic coastal plain, base‐flow generation was highly variable (spatially and temporally). Average base‐flow loads were greater in winter than summer, and higher during a wetter year than in dryer years. Specific sections of the stream consistently received greater amounts of high ground water than others. Areas within the riparian zone responsible for most of the exported from the watershed are termed “critical areas.” Over this 5‐year study, most of the exported during base flow originated from a critical area comprising less than 10% of the total riparian zone land area. Allocation of resources to address and improve mitigation function in critical areas should be a priority for continued riparian zone research.  相似文献   
742.
Abstract: Since the 1940s, snow water equivalent (SWE) has decreased throughout the Pacific Northwest, while water use has increased. Climate has been proposed as the primary cause of base‐flow decline in the Scott River, an important coho salmon rearing tributary in the Klamath Basin. We took a comparative‐basin approach to estimating the relative contributions of climatic and non‐climatic factors to this decline. We used permutation tests to compare discharge in 5 streams and 16 snow courses between “historic” (1942‐1976) and “modern” (1977‐2005) time periods, defined by cool and warm phases, respectively, of the Pacific Decadal Oscillation. April 1 SWE decreased significantly at most snow courses lower than 1,800 m in elevation and increased slightly at higher elevations. Correspondingly, base flow decreased significantly in the two streams with the lowest latitude‐adjusted elevation and increased slightly in two higher‐elevation streams. Base‐flow decline in the Scott River, the only study stream heavily utilized for irrigation, was larger than that in all other streams and larger than predicted by elevation. Based on comparison with a neighboring stream draining wilderness, we estimate that 39% of the observed 10 Mm3 decline in July 1‐October 22 discharge in the Scott River is explained by regional‐scale climatic factors. The remainder of the decline is attributable to local factors, which include an increase in irrigation withdrawal from 48 to 103 Mm3/year since the 1950s.  相似文献   
743.
Abstract: The relationship between forests and streamflows has long been an important research interest in China. The purpose of this paper is to summarize progress and lessons learned from the forest‐streamflow studies over the past four decades in China. To better measure the research gaps between China and other parts of the world, a brief global review on the findings from paired watershed studies over the past 100 years was also provided. In China, forest management shifted in the later 1990s from timber harvesting to forest restoration. Forest‐streamflow research was accordingly changed from assessing harvesting impacts to evaluating both harvesting and forestation effects. Over the past four decades, Chinese forest hydrology research has grown substantially. Significant progress has been made on measuring individual processes, but little solid, long‐term data were available to assess the relationship between forest changes and streamflows because of an absence of standard paired watersheds. In addition, misuse of statistical analyses was often found in the literature. A unique opportunity exists in China to study the forestation effects on streamflow as several large‐scale forestation programs are being implemented. Such an opportunity should include a robust paired watershed design under an integrated watershed ecosystem framework to avoid repeating the lessons already learned. Recommendations on future forest‐streamflow research directions in China are provided.  相似文献   
744.
Different methods exist for measuring soil water and solute fluxes in and below the root zone and have been critically reviewed. Besides indirect methods (e.g. water balance, tensiometer, time domain reflectometry – TDR, frequency domain reflectometry – FDR, environmental tracer) direct methods (e.g. drainage-type lysimeter, water fluxmeter) have a long tradition and have been successfully used in seepage research. A large weighable out door lysimeter is the best method for obtaining reliable data about seepage water quantity and quality, but it involves significant investment and additional expenses for maintenance. To tackle this problem new methods for the vertical collection of large volume soil monoliths (up to 6 m3) as well as for the horizontal collection (up to 6 m3) have been developed. For the placement of the lysimeter a container lysimeter unit was constructed, which is cheaper than a conventional steel or concrete cellar. Furthermore, the technical design of the newly developed lysimeter types as a weighable gravitation lysimeter, a weighable groundwater lysimeter and a lateral flow lysimeter are presented.  相似文献   
745.
Elevated nitrate concentrations in streamwater are a major environmental management problem. While land use exerts a large control on stream nitrate, hydrology often plays an equally important role. To date, predictions of low-flow nitrate in ungauged watersheds have been poor because of the difficulty in describing the uniqueness of watershed hydrology over large areas. Clearly, hydrologic response varies depending on the states and stocks of water, flow pathways, and residence times. How to capture the dominant hydrological controls that combine with land use to define streamwater nitrate concentration is a major research challenge. This paper tests the new Hydrologic Landscape Regions (HLRs) watershed classification scheme of Wolock and others (Environmental Management 34:S71-S88, 2004) to address the question: Can HLRs be used as a way to predict low-flow nitrate? We also test a number of other indexes including inverse-distance weighting of land use and the well-known topographic index (TI) to address the question: How do other terrain and land use measures compare to HLR in terms of their ability to predict low-flow nitrate concentration? We test this for 76 watersheds in western Oregon using the U.S. Environmental Protection Agency’s Environmental Monitoring and Assessment Program and Regional Environmental Monitoring and Assessment Program data. We found that HLRs did not significantly improve nitrate predictions beyond the standard TI and land-use metrics. Using TI and inverse-distance weighting did not improve nitrate predictions; the best models were the percentage land use—elevation models. We did, however, see an improvement of chloride predictions using HLRs, TI, and inverse-distance weighting; adding HLRs and TI significantly improved model predictions and the best models used inverse-distance weighting and elevation. One interesting result of this study is elevation consistently predicted nitrate better than TI or the hydrologic classification scheme.  相似文献   
746.
The water resources of most small island developing states (SIDS) are often very limited and require special consideration to ensure that they are developed and managed in a sustainable manner. Many small islands, typically located in the humid tropics, have no surface water resources and rely on limited groundwater resources in the form of thin freshwater lenses. The exposed location of small islands makes them particularly vulnerable to natural disasters such as cyclones, floods and droughts. Pollution from population centres and from agricultural and other activities is an increasing problem. This article provides an overview of the water resources of small islands, and the main problems and issues related to water resources. Some suggested solutions, based on practical experiences, are offered for water resource assessment and monitoring programmes, and water resource development. Water resource policy, planning and management issues are also addressed, and suggested approaches for resolving some of the major water resource problems presented.  相似文献   
747.
The goal of this study was to develop a methodology for generating storm hydrographs at a watershed scale based on daily runoff estimates from a field scale model. The methodology was evaluated on a small agricultural watershed using the ADAPT field scale process model. A comparison of observed and predicted peak flows for 11 of the largest events that occurred in a three year period gave r2 values of 0.84, 0.82, and 0.81 when the watershed was subdivided into 1, 5, and 10 sub watersheds. However, all other statistical measures improved when the watershed was subdivided into at least five sub watersheds. Guidelines need to be developed on the use of the procedure but it first needs to be evaluated on several watersheds that exhibit a range in sizes, land uses, slopes, and soil properties.  相似文献   
748.
Data from seven Management Systems Evaluation Areas (MSEA) were used to test the sensitivity of a leaching model, Pesticide Root Zone Model-2, to a variety of hydrologic settings in the Midwest. Atrazine leaching was simulated because it was prevalent in the MSEA studies and is frequently detected in the region's groundwater. Short-term simulations used site specific soil and chemical parameters. Generalized simulations used data avail. able from regional soil databases and standardized variables. Accurate short-term simulations were precluded by lack of antecedent atrazine concentrations in the soil profile and water, suggesting that simulations using data for less than five years underestimate atrazine leaching. The seven sites were ranked in order of atrazine detection frequency (concentration > 0.2 μg L-1) in soil water at 2 m depth in simulations. The rank order of the sites based on long-term simulations were similar to the ranks of sites based on atrazine detection frequency from groundwater monitoring. Simulations with Map Unit Use File (MUUF) soils data were more highly correlated with ranks of observed atrazine detection frequencies than were short-term simulations using site-specific soil data. Simulations using the MIJUIF data for soil parameters were sufficiently similarity to observed atrazine detection to allow the credible use of regional soils data for simulating leaching with PRZM-2 in a variety of Midwest soil and hydrologic conditions. This is encouraging for regional modeling efforts because soil parameters are among the most critical for operating PRZM-2 and many other leaching models.  相似文献   
749.
ABSTRACT: The purpose of this study was to determine the relationships between precipitation at the seasonal and annual scale and water discharge per surface area for seven contiguous first - and second-order tributaries of the Rhode River, a small tidal tributary to Chesapeake Bay, Maryland, USA. The goal was to quantify the effects of a wide range of precipitation, representative of inter-annual variations in weather in this region. The discharges measured included both overland storm flows and groundwater, since the aquifers were perched on a clay aquiclude. Precipitation varied from 824 to 1684 mm/yr and area-weighted Rhode River watershed discharge varied from 130 to 669 mm/yr with an average of 332 mm/yr or 29.1 percent of average precipitation. Average annual dis. charges from three first-order watersheds were significantly lower per surface area and varied from 16.0 to 21.9 percent of precipitation. Winter season precipitation varied from 125 to 541 mm. Area-weighted Rhode River winter discharge varied from 26.3 to 230 mm with an average of 115 mm or 43.9 percent of average precipitation. Spring season precipitation varied from 124 to 510 mm and watershed discharge varied from 40.0 to 321 mm with an average of 138 mm or 46.9 percent of average precipitation. In the summer and fall seasons, watershed discharge averaged 40.6 and 40.9 mm or 13.5 and 14.3 percent of average precipitation, respectively. Except in winter, the proportion of precipitation discharged in the streams increased rapidly with increasing volume of precipitation. Stream order showed a higher correlation with volume of discharge than vegetative cover on the watershed.  相似文献   
750.
ABSTRACT: Global climate change due to the buildup of greenhouse gases in the atmosphere has serious potential impacts on water resources in the Pacific Northwest. Climate scenarios produced by general circulation models (GCMs) do not provide enough spatial specificity for studying water resources in mountain watersheds. This study uses dynamical downscaling with a regional climate model (RCM) driven by a GCM to simulate climate change scenarios. The RCM uses a subgrid parameterization of orographic precipitation and land surface cover to simulate surface climate at the spatial scale suitable for the representation of topographic effects over mountainous regions. Numerical experiments have been performed to simulate the present-day climatology and the climate conditions corresponding to a doubling of atmospheric CO2 concentration. The RCM results indicate an average warming of about 2.5°C, and precipitation generally increases over the Pacific Northwest and decreases over California. These simulations were used to drive a distributed hydrology model of two snow dominated watersheds, the American River and Middle Fork Flathead, in the Pacific Northwest to obtain more detailed estimates of the sensitivity of water resources to climate change. Results show that as more precipitation falls as rain rather than snow in the warmer climate, there is a 60 percent reduction in snowpack and a significant shift in the seasonal pattern of streamflow in the American River. Much less drastic changes are found in the Middle Fork Flathead where snowpack is only reduced by 18 percent and the seasonal pattern of streamflow remains intact. This study shows that the impacts of climate change on water resources are highly region specific. Furthermore, under the specific climate change scenario, the impacts are largely driven by the warming trend rather than the precipitation trend, which is small.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号