首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3063篇
  免费   295篇
  国内免费   1728篇
安全科学   203篇
废物处理   147篇
环保管理   301篇
综合类   2506篇
基础理论   762篇
污染及防治   836篇
评价与监测   123篇
社会与环境   116篇
灾害及防治   92篇
  2024年   7篇
  2023年   50篇
  2022年   100篇
  2021年   126篇
  2020年   117篇
  2019年   130篇
  2018年   124篇
  2017年   166篇
  2016年   190篇
  2015年   205篇
  2014年   224篇
  2013年   351篇
  2012年   282篇
  2011年   308篇
  2010年   253篇
  2009年   250篇
  2008年   174篇
  2007年   299篇
  2006年   314篇
  2005年   240篇
  2004年   210篇
  2003年   169篇
  2002年   128篇
  2001年   111篇
  2000年   95篇
  1999年   95篇
  1998年   71篇
  1997年   54篇
  1996年   43篇
  1995年   44篇
  1994年   48篇
  1993年   27篇
  1992年   20篇
  1991年   20篇
  1990年   9篇
  1989年   2篇
  1988年   6篇
  1987年   2篇
  1985年   1篇
  1983年   2篇
  1982年   5篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   1篇
  1973年   2篇
  1971年   1篇
  1970年   1篇
  1967年   1篇
排序方式: 共有5086条查询结果,搜索用时 15 毫秒
11.
石油污染土壤多酚氧化酶的动力学及热力学特征   总被引:1,自引:0,他引:1       下载免费PDF全文
土壤多酚氧化酶是一种氧化还原酶,能够将土壤中芳香族化合物氧化成醌,促进土壤中石油类物质的分解转化.以距大庆油田工作区不同距离(1、5、15 km)的石油污染地为对象,研究不同温度下石油污染裸地及羊草(Leymus chinensis)修复地的土壤多酚氧化酶活性及其动力学和热力学特征的变化.结果表明:土壤多酚氧化酶活性随温度和底物浓度的增加而逐渐增大,在温度为30℃或40℃、底物浓度为80 mmol/L或160 mmol/L时达到最大值;各样地土壤酶的动力学参数Km(Mihaelis常数)随温度的变化规律不同,Vmax(酶促反应最大速度)和Vmax/Km(催化效率)随温度升高而逐渐增大,均在30℃或40℃时达到最大值;热力学参数Q10(温度系数)、ΔH(活化焓)、ΔS(活化熵)随温度变化差异不显著,ΔG(活化自由能)随温度升高呈逐渐增加趋势.在同一温度下,石油污染裸地土壤多酚氧化酶活性高于羊草修复地;Km和Vmax/Km在各样地均表现为无规律性变化,Vmax最大值出现在距油田工作区5 km处的裸地(BMP),最小值出现在距油田工作区5 km处的羊草修复地(LMP);Q10、Ea(活化能)、ΔH、ΔS的最大值均出现在距油田工作区1 km处的裸地(BVP),最小值均出现在距油田工作区1 km处的羊草修复地(LVP).研究显示,升温和植物修复对土壤多酚氧化酶活性的反应特征有较大影响.   相似文献   
12.
通过温室盆栽试验,研究构树(Broussonetia papyrifera)生长对重金属污染土壤酶活性和微生物群落结构的影响.结果表明,构树修复污染土壤中酶活性和微生物多样性明显提高.经270d培养后,构树生长土壤中蔗糖酶和酸性磷酸酶活性与种植土壤相比分别显著(P<0.05)提高3.12倍和2.29倍;土壤脱氢酶与有效态As、Cd、Pb、Zn和Cu含量,蔗糖酶与有效态Cd含量,以及磷酸酶与有效态Cd和Cu含量之间呈显著负相关(P<0.05).根据16S和18S rDNA PCR-DGGE分析表明,构树修复可提高污染土壤中细菌和丛枝菌根真菌多样性.上述结果表明,构树修复可有效改善重金属污染土壤的环境质量.然而,污染土壤中重金属有效态含量下降不明显,必须辅助物理和化学措施来强化构树对重金属污染土壤的生态修复潜力.  相似文献   
13.
The increasing production and use of engineered silver nanoparticles (AgNP) in industry and private households are leading to increased concentrations of AgNP in the environment. An ecological risk assessment of AgNP is needed, but it requires understanding the long term effects of environmentally relevant concentrations of AgNP on the soil microbiome. Hence, the aim of this study was to reveal the long-term effects of AgNP on soil microorganisms. The study was conducted as a laboratory incubation experiment over a period of one year using a loamy soil and AgNP concentrations ranging from 0.01 to 1?mg?AgNP/kg soil. The short term effects of AgNP were, in general, limited. However, after one year of exposure to 0.01?mg?AgNP/kg, there were significant negative effects on soil microbial biomass (quantified by extractable DNA; p?=?0.000) and bacterial ammonia oxidizers (quantified by amoA gene copy numbers; p?=?0.009). Furthermore, the tested AgNP concentrations significantly decreased the soil microbial biomass, the leucine aminopeptidase activity (quantified by substrate turnover; p?=?0.014), and the abundance of nitrogen fixing microorganisms (quantified by nifH gene copy numbers; p?=?0.001). The results of the positive control with AgNO3 revealed predominantly stronger effects due to Ag+ ion release. Thus, the increasing toxicity of AgNP during the test period may reflect the long-term release of Ag+ ions. Nevertheless, even very low concentrations of AgNP caused disadvantages for the microbial soil community, especially for nitrogen cycling, and our results confirmed the risks of releasing AgNP into the environment.  相似文献   
14.
Microbiological characteristics in a zero-valent iron reactive barrier   总被引:6,自引:0,他引:6  
Zero-valent iron (Fe0)-based permeable reactive barriertreatment has been generating great interest for passivegroundwater remediation, yet few studies have paid particularattention to the microbial activity and characteristics withinand in the vicinity of the Fe0-barrier matrix. The presentstudy was undertaken to evaluate the microbial population andcommunity composition in the reducing zone of influence byFe0 corrosion in the barrier at the Oak Ridge Y-12 Plantsite. Both phospholipid fatty acids and DNA analyses were usedto determine the total microbial population and microbialfunctional groups, including sulfate-reducing bacteria,denitrifying bacteria, and methanogens, in groundwater andsoil/iron core samples. A diverse microbial community wasidentified in the strongly reducing Fe0 environment despitea relatively high pH condition within the Fe0 barrier (up topH 10). In comparison with those found in the backgroundsoil/groundwater samples, the enhanced microbial populationranged from 1 to 3 orders of magnitude and appeared to increase from upgradient of the barrier to downgradient soil. Inaddition, microbial community composition appeared to change overtime, and the bacterial types of microorganismsincreased consistently as the barrier aged. DNA analysisindicated the presence of sulfate-reducing and denitrifyingbacteria in the barrier and its surrounding soil. However, theactivity of methanogens was found to be relatively low,presumably as a result of the competition by sulfate/metal-reducing bacteria and denitrifying bacteria because of the unlimited availability of sulfate and nitrate in the site groundwater. Results of this study provide evidenceof a diverse microbial population within and in the vicinity ofthe iron barrier, although the important roles of microbial activity, either beneficially or detrimentally, on the longevityand enduring efficiency of the Fe0 barriers are yet to be evaluated.  相似文献   
15.
Nahanni National Park Reserve is located at southwestern NWT-Yukon border. One of the first UNESCO World Heritage sites, Nahanni lies within Taiga Cordillera and Taiga Shield Ecozones. Base and precious metal mining occurred upstream of Nahanni prior to park establishment. Nahanni waters, sediments, fish, and caribou have naturally elevated metals levels. Baseline water, sediment and fish tissue quality data were collected and analyzed throughout Nahanni during 1988–91 and 1992–97. These two programs characterized how aquatic quality variables are naturally varying in space and time, affected by geology, stream flow, seasonality, and extreme meteorological and geological events. Possible anthropogenic causes of aquatic quality change were examined. Measured values were compared to existing Guidelines and site-specific objectives were established.  相似文献   
16.
The Chesapeake Bay benthic index of biotic integrity (B-IBI) was developed to assess benthic community health and environmental quality in Chesapeake Bay. The B-IBI provides Chesapeake Bay monitoring programs with a uniform tool with which to characterize bay-wide benthic community condition and assess the health of the Bay. A probability-based design permits unbiased annual estimates of areal degradation within the Chesapeake Bay and its tributaries with quantifiable precision. However, of greatest interest to managers is the identification of problem areas most in need of restoration. Here we apply the B-IBI to benthic data collected in the Bay since 1994 to assess benthic community degradation by Chesapeake Bay Program segment and water depth. We used a new B-IBI classification system that improves the reliability of the estimates of degradation. Estimates were produced for 67 Chesapeake Bay Program segments. Greatest degradation was found in areas that are known to experience hypoxia or show toxic contamination, such as the mesohaline portion of the Potomac River, the Patapsco River, and the Maryland mainstem. Logistic regression models revealed increased probability of degraded benthos with depth for the lower Potomac River, Patapsco River, Nanticoke River, lower York River, and the Maryland mainstem. Our assessment of degradation by segment and water depth provided greater resolution of relative condition than previously available, and helped define the extent of degradation in Chesapeake Bay.  相似文献   
17.
The Republican River Basin of Colorado,Nebraska, and Kansas lies in a valley which contains PierreShale as part of its geological substrata. Selenium is anindigenous constituent in the shale and is readily leached intosurrounding groundwater. The Basin is heavily irrigated throughthe pumping of groundwater, some of which is selenium-contaminated, onto fields in agricultural production. Water,sediment, benthic invertebrates, and/or fish were collected from46 sites in the Basin and were analyzed for selenium to determinethe potential for food-chain bioaccumulation, dietary toxicity,and reproductive effects of selenium in biota. Resultingselenium concentrations were compared to published guidelines orbiological effects thresholds. Water from 38% of the sites (n = 18) contained selenium concentrations exceeding 5 g L-1, which is reported to be a high hazard for selenium accumulation into the planktonic food chain. An additional 12 sites (26% of the sites) contained selenium in water between 3–5 g L-1, constituting a moderate hazard. Selenium concentrations in sedimentindicated little to no hazard for selenium accumulation fromsediments into the benthic food chain. Ninety-five percent ofbenthic invertebrates collected exhibited selenium concentrationsexceeding 3 g g-1, a level reported as potentially lethal to fish and birds that consume them. Seventy-five percent of fish collected in 1997, 90% in 1998, and 64% in 1999 exceeded 4 g g-1selenium, indicating a high potential for toxicity andreproductive effects. However, examination of weight profilesof various species of collected individual fish suggestedsuccessful recruitment in spite of selenium concentrations thatexceeded published biological effects thresholds for health andreproductive success. This finding suggested that universalapplication of published guidelines for selenium may beinappropriate or at least may need refinement for systems similarto the Republican River Basin. Additional research is needed todetermine the true impact of selenium on fish and wildliferesources in the Basin.  相似文献   
18.
A main goal of investigations is to determine could a soilrespiration be an indicator of the soil pollution. In this case a measured levelof the soil oxygen consumption depends of its pollution. It alsomeans that the pollution reduces biological processes in edaphon.Investigated soil samples were taken from polluted andnon-polluted places in the Baix Llobregat near Barcelona (Catalonia, NE Spain). Soil samples were taken from the top ofsoil (0–5 cm) without a litter. Soil analysis were done, determining percentage shares of coarsefragments, coarse sand, fine sand, coarse silt, fine silt, clay,CaCO3, organic matter as well as water pH and conductivityCE (1:5 [mS cm-1]). Also were determined (in mg kg-1)quantities of heavy metals, as Fe, Al, Mn, Zn, Cr, Ni, V, Cu, Cd, Pb.The soil respiration was investigated in temperatures15 and 30 °C and with controlled humidity.The respiration in 30 °C is number of times greater thenin 15 °C both for polluted and non-polluted soils.Particularly high coefficients of correlation between the soilrespiration and soil pollution in polluted soils were obtainedfor Pb: r = 0.75 in 15 °C and r = 0.98 in30 °C; for Ba: 0.90 and 0.57; for V: 0.99 and 0.81. In non-polluted soils highest correlation coefficients are for Pb: r = 0.70 in 15 °C; Fe: 0.60 and 0.72; Al: 0.68 and0.64; Mn: 0.51 and 0.66; Ba: 0.63 and 0.61; Cr: 0.94 and0.70; Ni: 0.64 and 0.65; Cu: 0.69 and 0.48; as well as V: 0.62in 15 °C; and Cd: 0.69 in 15 °C.This way the soil respiration could be a good indicator of the soil pollution.  相似文献   
19.
A method is proposed to build integrated models (also called Metamodels) aimed at quantifying the economic efficiency of air quality policies. This Metamodeling approach is based on the coupling of two complementary models, that operate at different scales in space and time, and which represent the economic and the physical and chemical processes, respectively. The joint consideration of the physico-chemical and techno-economic structure of the pollution control problems permits a comprehensive evaluation of air pollution abatement strategies. The motivating pollution control problems include urban-regional air quality management through efficient energy and traffic control policies. A pilot study, exploiting data collected in the Geneva canton (Switzerland), is used to demonstrate the potential of the approach.  相似文献   
20.
Identifying process from pattern is one of the most vexing tasks inenvironmental monitoring. Given information on the distribution of speciesin a pre-defined area, together with comprehensive data on how environmentalconditions in that area have altered through time, is it possible toidentify the factors controlling the species‘ layout? Here, the practicalsignificance of this quandary is demonstrated using a series ofenvironmentally-degraded coastal lagoons in New South Wales. The TuggerahLakes (33°17′S,151°30′E) have over the last 50 yearsexperienced significant changes in species‘ distributions. Seagrasses,macroalgae, phytoplankton, molluscs, prawns and the jellyfish Catostylus mosaicus have altered in spatial pattern. Two human activitieshave been blamed for these perturbations: (1) agricultural clearance ofnative vegetation from the catchment, with associated input of top-soil andnutrients; (2) the commissioning of a coal-fired power station in 1967, withmassive uptake and recirculation of lake water for cooling purposes. In thispaper, spatial changes in macrophyte distributions over the last 50 yearsare reviewed in an attempt to identify the true source(s) of perturbation.The model adopted assumes that the power station is a point source of impactwhile nutrient inputs from the catchment are a diffuse source of impact;changes in species distributions can hypothetically be related back to thesesources according to whether they are localised or widespread. However,after a comprehensive analysis of available macrophyte data derived frominterviews, aerial photography and line transect methodologyies theconclusion is reached that changes in biogeographical pattern around theTuggerah Lakes cannot be attributed to specific anthropogenic pressures atanything beyond the coarsest of levels. This is considered to be the normfor most coastal management situations where natural background variation(’noise‘) and the complexity of linkages between physical, chemical andbiological components confounds the identification of causal relationships.The practical implications of this conclusion are discussed in the contextof litigation and remedial management design. Emphasis is placed on theneed to adopt an adaptive approach to estuarine management, incorporatingexplicit recognition of the limitations of available data, and to developnew techniques for identifying cause-effect relationships.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号