首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   968篇
  免费   145篇
  国内免费   507篇
安全科学   152篇
废物处理   60篇
环保管理   82篇
综合类   900篇
基础理论   155篇
污染及防治   184篇
评价与监测   65篇
社会与环境   9篇
灾害及防治   13篇
  2024年   4篇
  2023年   27篇
  2022年   31篇
  2021年   45篇
  2020年   39篇
  2019年   39篇
  2018年   43篇
  2017年   51篇
  2016年   56篇
  2015年   66篇
  2014年   73篇
  2013年   83篇
  2012年   98篇
  2011年   91篇
  2010年   71篇
  2009年   74篇
  2008年   45篇
  2007年   106篇
  2006年   87篇
  2005年   58篇
  2004年   46篇
  2003年   56篇
  2002年   40篇
  2001年   42篇
  2000年   43篇
  1999年   43篇
  1998年   33篇
  1997年   26篇
  1996年   13篇
  1995年   20篇
  1994年   18篇
  1993年   18篇
  1992年   10篇
  1991年   10篇
  1990年   5篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1978年   1篇
  1977年   1篇
排序方式: 共有1620条查询结果,搜索用时 171 毫秒
391.
Oxidation of sulfurized rust in oil tank is complicated, and it is influenced by numerous factors such as water content, air humidity, operating temperature etc. The paper focuses on the oxidation process of sulfurized rust in the wild. Firstly, samples collected from a petrochemical company were put into the sulfurization & oxidation experimental apparatus to gain wet and dry sulfurized rusts. Their chemical compositions and phase were analyzed by Energy Dispersive X-ray Spectrometer (EDS) -scanning electron microscope (SEM) technique. The results showed that both wet and dry sulfurized rusts had S, Fe2O3, Fe3S4 and FeS2, whereas FeS only existed in wet sulfurized rust. The two kinds of rusts gave a short length of side, diamond appearance and a large pore size in structure. Then oxidation of wet sulfurized rust was investigated, which included electrochemical reaction stage, electrochemical & chemical reaction coexisting stage and chemical reaction stage. The final oxidation product of wet sulfurized was determined to be Fe2O3. On the basis of this study, an indicator for monitoring and early-warning was proposed to prevent plants in vicinity of the accidental vessel or tank from fire and explosion.  相似文献   
392.
The aim of this study was to examine the production of nanoscale ions via the liquid phase reduction method and the effectiveness of the removal of nitrate nitrogen (NO3?–N) as well as measure the products and kinetics of the reactions. The nanoparticles obtained were approximately 50 nm in diameter and the main component was iron (Fe). This custom-made nanoscale Fe was highly positively charged, and reacted rapidly with NO3?–N in oxygen-free and neutral conditions at room temperature. A 90% removal rate was achieved when the reaction occurred for 30 min in simulation sample water with vigorous shaking at 250 r/min at NO3?–N concentrations of 30, 50, 80 or120 mg N/L. The nanometer Fe dosage was maintained throughout the experiment at 4 g/L. A first-order kinetics equation was applied to the obtained experimental data which followed a pseudo first-order reaction. Data demonstrated that the removal of nitrate nitrogen from polluted groundwater using a nanoscale Fe iron was effective and rapid.  相似文献   
393.
采用以单箱模型法为基础的A值法对西安市大气容量进行估算,并将干沉降、湿沉降和化学转化三个消除过程引入模型测算中,借鉴国内外对于大气常规污染物的清除系数的科学研究成果,对研究区域的SO2、NO2、PM10及PM2.5等4项常规污染物的环境容量进行估算。结果表明,执行2012年新的环境质量标准下,西安市SO2、NO2、PM10及PM2.5大气环境容量分别为13.86×104吨/年,9.24×104吨/年、1.62×105吨/年及8.09×104吨/年。  相似文献   
394.
利用从土壤铁锰结核中分离筛选得到的1株锰氧化细菌(芽孢杆菌,Bacillus sp.)GY16合成生物氧化锰,与化学合成的水钠锰矿进行比较,研究了不同氧化锰对As的氧化吸附特征.结果表明,生物氧化锰和化学氧化锰对As(Ⅲ)均有强烈的氧化作用,化学氧化锰对As(Ⅲ)的氧化速率要高于生物氧化锰,而单位物质的量的生物氧化锰对As(Ⅲ)的氧化量可达化学氧化锰的5倍,并且对As(Ⅴ)有非常明显的吸附作用,而化学氧化锰对As(Ⅴ)的吸附量则非常少.此外,随着生物氧化锰与As(Ⅲ)/As(Ⅴ)反应的进行,生物氧化锰对As(Ⅲ)/As(Ⅴ)的氧化吸附速率均逐渐降低.随着pH的增加,生物氧化锰对As(Ⅲ)的氧化量及As(Ⅴ)的吸附量均呈现出明显的下降趋势,但是化学氧化锰对As(Ⅴ)的吸附量却有微弱的增加.研究结果可为生物氧化锰应用于环境修复提供可靠的技术支撑.  相似文献   
395.
利用间歇反应器考察了非那西丁(PNT)、吉非罗齐(GFZ)、咖啡因(CAF)、双氯芬酸(DCF)和胆固醇(CH)5种医药类污染物分别在厌氧、缺氧及好氧条件下的吸附与降解特性,并通过动力学拟合深入考察目标物的降解速率及所符合的反应级数.研究表明,PNT在4 h内就能得到100%的降解,GFZ与CH能通过吸附与降解得到部分或全部去除.好氧条件下目标物的泥水分配系数kp值与降解速率均高于缺氧与厌氧条件,好氧条件下CAF的去除率达到99%以上.5种目标物除PNT外都有不同程度的吸附,目标物的污泥吸附能力为CHDCFGFZCAF;动力学拟合结果表明,生物降解动力学一级反应速率PNTCAF,二级反应速率CHGFZ;DCF几乎不能被生物降解,但符合二级吸附动力学模型,其平衡吸附量最高可达总投加量的71%.  相似文献   
396.
三维花状结构α-FeOOH协同H2O2可见光催化降解双氯芬酸钠   总被引:2,自引:1,他引:1  
采用油浴回流法,在常压回流反应条件下批量制备出三维花状结构的α-Fe OOH纳米材料,并利用XRD、FT-IR和SEM等仪器对其进行分析表征;以双氯芬酸钠为目标污染物,考察三维花状结构α-Fe OOH纳米材料,在模拟太阳光照射下,催化H2O2降解有机污染物的性能.结果表明,三维花状结构α-Fe OOH由纳米棒自组装形成,纳米棒的长度约400~500 nm,直径约40~60 nm.以模拟可见光为光源,三维花状结构α-Fe OOH与H2O2构成光助异相类Fenton体系,对双氯芬酸钠有良好的光催化降解效果,在90 min内对初始浓度为30 mg·L-1的双氯芬酸钠降解去除率达到99%以上,催化降解反应以羟基自由基氧化反应为主.  相似文献   
397.
以废弃物沼渣和含铁剩余污泥为原料,采用一步热解法制备沼渣生物炭基Fenton催化剂(以下简称催化剂),构建了非均相Fenton反应体系处理含吡虫啉模拟废水,考察了H2 O2和催化剂用量对吡虫啉去除率的影响.结果表明,非均相Fenton反应体系中,H2 O2最佳投加量为0.50 g/L,催化剂最佳投加量为1.00 g/L...  相似文献   
398.
Reactive properties of aquifer solid phase materials play an important role in solute fate and transport in the natural subsurface on time scales ranging from years in contaminant remediation to millennia in dynamics of aqueous geochemistry. Quantitative tools for dealing with the impact of natural heterogeneity in solid phase reactivity on solute fate and transport are limited. Here we describe the use of a structural variable to keep track of solute flux exposure to reactive surfaces. With this approach, we develop a non-reactive tracer model that is useful for determining the signature of multi-scale reactive solid heterogeneity in terms of solute flux distributions at the field scale, given realizations of three-dimensional reactive site density fields. First, a governing Eulerian equation for the non-reactive tracer model is determined by an upscaling technique in which it is found that the exposure time of solution to reactive surface areas evolves via both a macroscopic velocity and a macroscopic dispersion in the artificial dimension of exposure time. Second, we focus on the Lagrangian approach in the context of a streamtube ensemble and demonstrate the use of the distribution of solute flux over the exposure time dimension in modeling two-dimensional transport of a solute undergoing simplified linear reversible reactions, in hypothetical conditions following prior laboratory experiments. The distribution of solute flux over exposure time in a given case is a signature of the impact of heterogeneous aquifer reactivity coupled with a particular physical heterogeneity, boundary conditions, and hydraulic gradient. Rigorous application of this approach in a simulation sense is limited here to linear kinetically controlled reactions.  相似文献   
399.
Biodegradation potentials of polycyclic aromatic hydrocarbons (PAHs) were determined with soil samples collected from various depths of a PAH-contaminated site and of a site nearby where PAHs were not found. Putative dioxygenase genes were amplified by a primer set specific for initial dioxygenases and identified by web-based database homology search. They were further categorized into several groups of which four dioxygenases were selected as probes for DNA hybridization. The hybridization signals according to the presence of putative dioxygenases were positively related to the extent of PAH contamination. However, the signal intensities varied depending on the probes hybridized and moreover were not consistent with PAH biodegradation activities determined by CO2 evolution. Despite widely accepted advantages of molecular biodegradation assessment, our data clearly present the variations of assessment results depending on the genetic information used and suggest that the methodology may tend to underestimate the real biodegradation capacity of a site probably due to the limited dioxygenase database available at the moment. Therefore, the molecular assessment of biodegradation potential should involve a very careful primer and probe design and an extensive microbiological examination of a site of interest to accurately delineate the biodegradation potential of the site.  相似文献   
400.
- DOI: http://dx.doi.org/10.1065/espr2006.01.002 Background Davide Calamari and his colleagues were among the first to appreciate that vegetation could play a key role in determining the fate and effects of organic contaminants. They conducted pioneering experiments to investigate the uptake of contaminants by plants from the atmosphere and they sought to model the observed phenomena. In the nearly two decades since there has been a marked increase in understanding of these phenomena as a result of both experimental and modelling studies. - Goal. In this study we briefly review our current understanding of chemical partitioning between foliage and air. A model in both fugacity and concentration format is described, based on that of Tolls and McLachlan (1994), in which the leaf is treated as consisting of two layers, a waxy cuticle with an underlying 'reservoir' layer, the cuticle being surrounded by an air boundary layer and containing stomata that provide direct access from the air to the 'reservoir'. The model quantifies the dynamic penetration of a defined chemical into a defined leaf as a function of time. Main Features The model is applied for illustrative purposes to a hypothetical but typical leaf for a set of illustrative chemicals to demonstrate the effect of changes in physical-chemical properties and leaf characteristics. Discussion The results are compared qualitatively with a variety of field and laboratory studies of foliage uptake and clearance of chemicals. Conclusion It is concluded that the model yields results that are generally consistent with observations. It is suggested that with appropriate parameterisation and validation, the model can contribute to an improved understanding of the process of foliage uptake from the atmosphere and to the development of an improved predictive capability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号