ABSTRACT: Snow, one of Nature's greatest reservoirs, supplies most of the usable water in the Western United States. Reliable predictions of the quantity and timing of the release of this water are used in making management decisions involving irrigation, stock water and municipal water supplies, hydro-power generation, recreation, navigation, and pollution control Practically oriented research is vital for the proper development and management of this resource. In southwestern Idaho, the Northwest Watershed Research Center, ARS, USDA, is conducting intensive investigations for assessing snow Volumes, snow water content, and snow-melt over a watershed. Application of these research findings will result in better development and management of the water stored as snow in Nature's reservoir. 相似文献
ABSTRACT: Two dynamic programming models — one deterministic and one stochastic — that may be used to generate reservoir operating rules are compared. The deterministic model (DPR) consists of an algorithm that cycles through three components: a dynamic program, a regression analysis, and a simulation. In this model, the correlation between the general operating rules, defined by the regression analysis and evaluated in the simulation, and the optimal deterministic operation defined by the dynamic program is increased through an iterative process. The stochastic dynamic program (SDP) describes streamflows with a discrete lag-one Markov process. To test the usefulness of both models in generating reservoir operating rules, real-time reservoir operation simulation models are constructed for three hydrologically different sites. The rules generated by DPR and SDP are then applied in the operation simulation model and their performance is evaluated. For the test cases, the DPR generated rules are more effective in the operation of medium to very large reservoirs and the SDP generated rules are more effective for the operation of small reservoirs. 相似文献
ABSTRACT: The Pittsburgh District, U.S. Army Corps of Engineers, is responsible for operating two multipurpose reservoirs in the 7384 square mile (19198 square kilometer) Monongahela Basin. A third reservoir, presently under construction, will soon be operating. The real-time forecasting of runoff for operational purposes requires simulation of snow accumulation and snowmelt throughout the Basin during the winter season. This article describes capabilities of SNOSIM, a model being developed for performing such simulation. The application of this model as part of a comprehensive system of water control software, and some initial simulation results are presented. 相似文献