首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2480篇
  免费   156篇
  国内免费   250篇
安全科学   187篇
废物处理   103篇
环保管理   1016篇
综合类   897篇
基础理论   294篇
污染及防治   108篇
评价与监测   106篇
社会与环境   110篇
灾害及防治   65篇
  2024年   6篇
  2023年   30篇
  2022年   41篇
  2021年   51篇
  2020年   46篇
  2019年   44篇
  2018年   37篇
  2017年   45篇
  2016年   49篇
  2015年   56篇
  2014年   53篇
  2013年   113篇
  2012年   93篇
  2011年   97篇
  2010年   73篇
  2009年   73篇
  2008年   94篇
  2007年   60篇
  2006年   56篇
  2005年   52篇
  2004年   75篇
  2003年   107篇
  2002年   192篇
  2001年   182篇
  2000年   197篇
  1999年   148篇
  1998年   120篇
  1997年   106篇
  1996年   224篇
  1995年   74篇
  1994年   35篇
  1993年   24篇
  1992年   19篇
  1991年   25篇
  1990年   7篇
  1989年   13篇
  1988年   9篇
  1987年   4篇
  1986年   3篇
  1985年   22篇
  1984年   41篇
  1983年   40篇
  1982年   8篇
  1981年   6篇
  1980年   9篇
  1979年   2篇
  1978年   5篇
  1977年   2篇
  1971年   14篇
  1967年   1篇
排序方式: 共有2886条查询结果,搜索用时 31 毫秒
191.
ABSTRACT: The effects of a moving rainstorm on flood runoff characteristics were investigated. A flood hydrograph simulation model called “FH-Model” and a natural watershed were used. A hypothetical rainstorm of 50 years recurrence interval, 75 mm depth, and 4 hours duration was used to show the effects of velocity and direction of the moving rainstorm on the runoff characteristics. Compared with an equivalent stationary rainstorm (ESRS), the peak flow caused by a rainstorm moving in a downstream direction with a speed equal to channel velocity, V, was 27.5 percent higher and the peak flow caused by the same rainstorm moving in an upstream direction was 21.7 percent smaller. These percentages reduced to 10.5 percent and 8.6 percent for storms moving downstream and upstream, respectively, at three times the channel velocity, 3V. There were negligible differences in the time of peak, Tp between runoff caused by storms moving downstream and runoff produced by ESRS. However, Tp for a storm moving upstream at V velocity was 82 percent higher than that produced by ESRS, but was reduced to 27 percent higher when the storm velocity was 3V.  相似文献   
192.
ABSTRACT: Heat pulse velocity techniques were developed for effective monitoring of water movement in aspen (Populus tremuloides), subalpine fir (Abies lasiocarpa), and Englemann spruce (Picea engelmannif). Water loss was monitored in replicated trees of each species for one year. These data were used to modify the plant activity index (a reflection of the ability of plants to transpire water at various times during a year) and the crop coefficient (a reflection of differences in consumptive use rates of water by different vegetation types when all other factors are held constant) for each species within the model ASPCON, a deterministic, lumped-parameter model describing the hydrology of aspen to conifer succession. Results of the modeling in dicate 18.6 cm net loss of moisture available for streamflow when spruce replaced aspen, and a loss of 7.2 cm when fir forests replaced aspen. The aspen to conifer successional trend appears, therefore, to be significantly reducing water yields in the western United States.  相似文献   
193.
ABSTRACT: A technique for weighing bedload samples that was developed for laboratory use has been modified for field application. The technique involves determining the submerged weight of bedload samples as they are collected. The submerged weights are converted to dry weights from a knowledge of the specific gravity of the bedload material. The technique makes bedload transport data available immediately and eliminates costly and time-consuming steps involved with saving samples for laboratory analysis. Only samples designated for particle-size or other lab analyses need to be saved.  相似文献   
194.
ABSTRACT A stepwise multiple regression was used to evaluate the relative importance of antecedent-, event-, and high-intensity-precipitation amounts; runoff volume; and precipitation nutrient contents and concentrations in determining nutrient losses in runoff. Plots were fertilized at high, medium, and low rates and had cultivation ridges oriented up-and-down slope or on the contour. Runoff volume was the important factor in determining the loss of NO3, soluble PO4, total PO4, and soluble K ions in runoff from fallow, corn, or soybean plots. NH4-N loss was controlled mainly by the precipitation content and antecedet precipitation since fertilizer had been applied. Nutrient losses were greater from plots fertilized at the high rate and from plots with cultivation ridges oriented up-and-down slope rather than on the contour.  相似文献   
195.
ABSTRACT: Ideology has predisposed the People's Republic of China against the use of prices to allocate water. Prolonged drought in north China has made the Chinese more aware of their unfavorable water resource inventory and the expense of expanding supply. Therefore, as part of the economic liberalization commenced since the death of Mao Zedong, China has started to make more active use of pricing to regulate demand and reduce the need for supply expansion.  相似文献   
196.
ABSTRACT: Three forest watersheds were isolated by roads in poorly drained flatwoods of Florida. After 12 months of baseline calibration the forest in one watershed was harvested and regenerated with minimum disturbance, in the second watershed with maximum disturbance from common practices, and in the third watershed left intact as a control. Water yields from the maximum treatments increased a significant 250 percent while that from the minimum treatments increased 117 percent as compared to the control. Weed vegetation remaining after the minimum treatment continued significant water use. The water yield increases lasted only for one year. Water quality was reduced by both treatments with the most effect immediately after the maximum disturbance. Absolute levels of suspended sediments, potassium, and calcium remained relatively low. The maximum treatment caused significant changes in net cation balances only for one year. The information shows relative little effect of silvicultural practices in flatwoods on water quality as compared to data from upland forests. Water yield increases may be manipulated by the degree of harvest and weed control practices.  相似文献   
197.
Humans have severely impacted riparian ecosystems through water diversions, impoundments, and consumptive uses. Effective management of these important areas is becoming an increasingly high priority of land managers, particularly as municipal, industrial, and recreational demands for water increase. We examined radial tree growth of four riparian tree species (Pinus jeffreyi, Populus trichocarpa, Betula occidentalis, and Pinus monophylla) along Bishop Creek, California, and developed models relating basal area increment (BAI) and relative basal area increment (RBAI) to climatic and stream flow variables. Between years 1995–1999, univariate regression analysis with stream flow explained 29 to 61% of the variation in BAI and RBAI among all species except P. trichocarpa; growth by P. trichocarpa was not significantly related to stream flows over this period. Stepwise linear regression indicated that species responded differently to climatic variables, and models based on these variables explained between 33 to 86% of variation in BAI and RBAI during the decade of the 1990s. We examined branch growth of P. trichocarpa for sensitivity to differences in stream flow regimes and found that annual branch growth did not vary between a high- and low-flow site, but that annual branch growth was significantly higher in wet years with greater stream flows. Our results support the establishment of site-specific management goals by land managers that take into account all of the important tree species present in riparian ecosystems and their differential responses to altered hydrologic condition. Instream flow requirements for maintaining tree growth and vigor are only one of the species-specific responses that need to be evaluated, and these assessments should attempt to separate experimentally stream-flow (managed) controls from climatic (unmanaged) controls on growth.  相似文献   
198.
Our lack of understanding of relationships between stream biotic communities and surrounding landscape conditions makes it difficult to determine the spatial scale at which management practices are best assessed. We investigated these relationships in the Minnesota River Basin, which is divided into major watersheds and agroecoregions which are based on soil type, geologic parent material, landscape slope steepness, and climatic factors affecting crop productivity. We collected macroinvertebrate and stream habitat data from 68 tributaries among three major watersheds and two agroecoregions. We tested the effectiveness of the two landscape classification systems (i.e., watershed, agroecoregion) in explaining variance in habitat and macroinvertebrate metrics, and analyzed the relative influence on macroinvertebrates of local habitat versus regional characteristics. Macroinvertebrate community composition was most strongly influenced by local habitat; the variance in habitat conditions was best explained at the scale of intersection of major watershed and agroecoregion (i.e., stream habitat conditions were most homogeneous within the physical regions of intersection of these two landscape classification systems). Our results are consistent with findings of other authors that most variation in macroinvertebrate community data from large agricultural catchments is attributable to local physical conditions. Our results are the first to test the hypothesis and demonstrate that the scale of intersection best explains these variances. The results suggest that management practices adjusted for both watershed and ecoregion characteristics, with the goal of improving physical habitat characteristics of local streams, may lead to better basin-wide water quality conditions and stream biological integrity.  相似文献   
199.
We describe the development of a bird integrity index (BII) that uses bird assemblage information to assess human impacts on 13 stream reaches in the Willamette Valley, Oregon, USA. We used bird survey data to test 62 candidate metrics representing aspects of bird taxonomic richness, tolerance or intolerance to human disturbance, dietary preferences, foraging techniques, and nesting strategies that were affected positively or negatively by human activities. We evaluated the metric responsiveness by plotting each one against a measure of site disturbance that included aspects of land use/land cover, road density, riparian cover, and stream channel and substrate conditions. In addition, we eliminated imprecise and highly correlated (redundant) metrics, leaving 13 metrics for the final index. Individual metric scores ranged continuously from 0 to 10, and index scores were weighted to range from 0 to 100. Scores were calibrated using historical species information to set expectations for the number of species expected under minimally disturbed conditions. Site scores varied from 82 for the least disturbed stream reach to 8.5 for an urban site. We compared the bird integrity index site scores with the performance of other measures of biotic response developed during this study: a fish index of biointegrity (IBI) and two benthic macroinvertebrate metrics. The three assemblages agreed on the general level of disturbance; however, individual sites scored differently depending on specific indicator response to in-stream or riparian conditions. The bird integrity index appears to be a useful management and monitoring tool for assessing riparian integrity and communicating the results to the public. Used together with aquatic indicator response and watershed data, bird assemblage information contributes to a more complete picture of stream condition.  相似文献   
200.
Habitat-improvement structures on the Blackledge and Salmon rivers date back to the 1930s and 1950s. Forty of these structures were investigated to determine their long-term impact on channel morphology. These structures include designs that continue to be used in modern restoration efforts. During the intervening period since these structures were introduced, several major floods have affected the two channels. The floods include three flows in excess of the 50-year event, including the flood of record, which has an estimated recurrence interval of almost 300 years. Despite the extreme flooding, many structures were discovered in varying conditions of operation. Grade-control structures and low-flow deflectors generally create some low-flow habitat (P = 0.815) but do not produce the depth of water predicted by design manuals (P < 0.0001). Unintended erosion has developed in response to many of the channel modifications especially along the outside of meanders. In addition, the mode of failure of grade-control structures has created localized channel widening with associated bank erosion. Meanwhile, cover structures have produced a 30% reduction in streamside vegetation with over 75% less overhead cover than unaltered reaches. Based on these results, it is important for prospective designers to carefully consider the long-term impacts of instream structures when developing future channel-restoration projects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号