首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   832篇
  免费   155篇
  国内免费   665篇
安全科学   81篇
废物处理   38篇
环保管理   48篇
综合类   1112篇
基础理论   144篇
污染及防治   100篇
评价与监测   91篇
社会与环境   17篇
灾害及防治   21篇
  2024年   9篇
  2023年   33篇
  2022年   72篇
  2021年   96篇
  2020年   100篇
  2019年   88篇
  2018年   92篇
  2017年   61篇
  2016年   71篇
  2015年   83篇
  2014年   76篇
  2013年   80篇
  2012年   80篇
  2011年   68篇
  2010年   62篇
  2009年   77篇
  2008年   38篇
  2007年   63篇
  2006年   54篇
  2005年   61篇
  2004年   40篇
  2003年   24篇
  2002年   35篇
  2001年   28篇
  2000年   39篇
  1999年   18篇
  1998年   23篇
  1997年   9篇
  1996年   19篇
  1995年   4篇
  1994年   6篇
  1993年   13篇
  1992年   9篇
  1991年   5篇
  1990年   4篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1652条查询结果,搜索用时 15 毫秒
971.
采集阳泉市区夏季3个监测点的环境空气样品,利用气相色谱-质谱/氢火焰离子化检测器(GC-MSD/FID)测定了挥发性有机物(VOCs)的组成,研究了其浓度特征,运用特征比值法和正定矩阵因子分析模型(PMF)解析了VOCs来源,评估了VOCs对O_3和二次有机气溶胶(SOA)生成的影响.结果表明,阳泉市区VOCs平均总浓度为(82.1±22.7)μg·m~(-3),其中烷烃浓度占比最大(51.8%),其次是芳香烃(17.8%)和烯烃(8.0%),炔烃浓度占比最小(3.8%). VOCs呈现双峰的变化特征,分别于08:00~10:00和18:00~20:00出现峰值,在12:00~14:00出现谷值.苯/甲苯和异戊烷/正戊烷的均值分别为2.1±1.3和1.7±0.6,表明环境空气VOCs可能受燃煤排放和机动车排放的双重影响. PMF解析出VOCs来源分别为燃煤源(34.9%)、机动车排放源(18.2%)、汽油挥发源(15.2%)、工业排放源(13.6%)、植物排放源(9.2%)和溶剂使用源(9.0%). VOCs臭氧生成潜势(OFP)均值为156.6μg·m~(-3),烯烃贡献最大,二次有机气溶胶生成潜势(SOA_p)均值为68.7μg·m~(-3),芳香烃的贡献达到93.4%.总之,燃煤排放对VOCs的贡献较高,因此,控制燃煤源排放是阳泉市区VOCs管控重点,需加快矸石山治理和能源结构调整,同时机动车排放源、汽油挥发源和工业排放源的管控也不容忽视.  相似文献   
972.
选取北京、石家庄和唐山作为京津冀区域典型城市,基于实地样品采集和组分分析结果,探讨PM2.5组分中二次无机水溶性离子(SNA)浓度变化特征,并利用空气质量模型模拟结果分析重污染前后京津冀地区各类污染源大气污染物排放对PM2.5和SNA质量浓度的贡献.结果显示:3个城市PM2.5质量浓度整体呈现逐年下降的趋势,多数情况下SO42-、NO3-和NH4+浓度极大值同时出现在冬季,PM2.5化学组分较为稳定.相对于常规时段,重污染期间SO42-、NO3-和NH4+质量浓度明显增加,重污染前一天SNA浓度占PM2.5比值达到最高.重污染的形成是本地源排放和外来区域传输共同作用的结果,外来源对NO3-的贡献整体高于SO42-和NH4+.交通源、居民源和工业源对PM2.5、SO42-和NO3-浓度贡献最高,NH4+主要来自居民源的排放.  相似文献   
973.
本研究在河北工程大学监测站点开展了大气中56种VOCs、NOx以及气象参数的长期在线监测,结合2013—2019年国控站的在线监测数据,对邯郸市PM2.5-O3复合污染特征进行分析.结果表明,邯郸市2013—2019年复合污染天数波动较大,近几年呈现增加趋势,且集中在每年的春夏季.2013—2017年复合污染天数峰值均出现在6月,2018年和2019年出现在3月和4月.气象因素分析结果表明,温度、湿度和气压对邯郸市复合污染影响较明显,当温度为21.0~29.0℃、湿度较高、气压偏低的条件下,更容易发生复合污染,而风速对邯郸市复合污染影响较小.对PM2.5与O3相互作用分析发现,冬季高浓度PM2.5对O3有抑制作用,夏季PM2.5浓度不超标时,O3浓度随其升高而上升,PM2.5浓度超标后变化趋势相反,当PM2.5浓度大于125 μg·m-3时不再出现PM2.5-O3复合污染.虽然近年来PM2.5、SO2和NO2浓度下降,但二次转化率依然较高甚至有加强趋势.利用VOCs/NOx值分析邯郸市O3生成敏感性,结果显示邯郸市春冬季属于VOCs控制到NOx控制的过渡区,夏秋季属于NOx控制区,且复合污染日VOCs/NOx值(6.3)最小,清洁日(9.3)最大.复合污染时NO3-和OC浓度较高,OC/EC值与其他污染日相比最大,说明复合污染时二次污染严重,有效治理PM2.5-O3复合污染必须减排能同时形成O3和二次有机气溶胶的高活性有机物.  相似文献   
974.
南北极大气气溶胶单颗粒成分特点研究   总被引:2,自引:0,他引:2       下载免费PDF全文
运用定量电子探针微区分析技术(EPMA)分别测定了采自北极新奥尔松地区(78?55′N、11?56′E)和南极乔治王岛(62?13′S、58?47′W)极昼天气下PM10大气颗粒物样品.结果表明,北极和南极大气颗粒物化学成分存在很大差异,表现出各自不同的特点.北极的颗粒类型中,“反应的海盐”和“矿物尘”分别占颗粒总数的44%和27%,“新鲜海盐”所占的比例不到10%,“反应的海盐”中以含硝酸盐的颗粒为主,反映了外来物质或人为污染对该地气溶胶影响较大;南极的颗粒类型中,“新鲜海盐”占总数的74%左右,“反应的海盐”占19%,反应的海盐全部含硫酸盐、未发现含硝酸盐的颗粒,推测与海盐反应的含硫物质来源于海洋浮游生物代谢过程产生的二甲硫醚(DMS)及其降解产物,而与人为污染无关.  相似文献   
975.
为研究嘉兴地区嘉善冬季污染时段和清洁时段PM2.5化学组分特征,结合气象数据对2019年1月嘉兴市嘉善县善西超级站在线自动监测PM2.5及化学组分数据、气态污染物(NO2和SO2)进行了分析.结果表明,2019年1月嘉善善西超级站污染时段PM2.5浓度(97.18μg·m-3)为清洁时段(36.77μg·m-3)的2.6倍.污染时段水溶性离子浓度(41.58μg·m-3)较清洁时段(19.82μg·m-3)高21.76μg·m-3,但占比有所降低,含碳组分比例增加.OC;EC比值为3.93,可能受到燃煤及机动车排放的共同影响.低风速及高湿有利于NO2和SO2等气态污染物进行二次转化,污染时段硫转化率和氮转化率均比清洁时段高,分别增高7.93%和54.11%,说明NOx向硝酸盐二次转化较为明显,导致颗粒物浓度升高.聚类分析结果显示67.34%气流来自北方,且相应的气流轨迹上污染物浓度比周边高,说明污染物存在一定的长距离输送.结合风玫瑰图可以看出,污染主要为本地及其周边的输送,污染物的长距离输送在短时会使污染浓度突增.因此,在重点关注本地及周边污染的同时,偏北气流下的污染物区域输送不可忽视.  相似文献   
976.
西安市春季大气细粒子的质量浓度及其水溶性组分的特征   总被引:25,自引:0,他引:25  
为了探讨西安市春季大气细粒污染物的污染水平及水溶性组分的特征及来源,2005年3—5月对西安大气PM2.5进行了观测,并应用离子色谱对其中的水溶性组分进行了分析。结果显示,西安市春季大气PM2.5的质量浓度为159.9μg·m-3。分析的11种阴阳离子(Na 、NH4 、K 、Mg2 、Ca2 、F-、Cl-、Br-、NO2-、NO3-和SO42-)质量浓度占PM2.5的30%,表明水溶性组分是大气细粒子的主要组成之一。NH4 、SO42-和NO3-为水溶性离子的主要组分,其平均质量浓度分别为6.6、20.1和7.6μg·m-3,在总水溶性离子中的百分比分别为12.4%、47.4%和16.9%,SO42-和NO3-质量浓度与能见度有较好的负相关性,表明细粒子中二次气溶胶组分对能见度有显著的影响。阴阳离子的平衡和pH值的测定结果显示,西安市大气细粒子污染物为弱酸性。离子间的相关性分析揭示水溶性离子在颗粒物中主要结合方式为(NH4)2SO4、NH4HSO4、NH4NO3、KHSO4和K2SO4。Mg2 和Ca2 的相关性也较好,其摩尔比率为0.07,小于中国北方沙漠和黄土的平均值(0.15),揭示二次扬尘和建筑扬尘等过程对Ca2 的质量浓度影响较大。计算的NO3-/SO42-质量浓度比值的均值为0.38,说明固定排放源(燃煤)对细粒子中水溶性组分的贡献大于移动排放源(机动车)。  相似文献   
977.
基于内蒙古赛罕乌拉森林生态系统定位研究站山杨(Populus davidiana Dode)天然次生林幼龄林、中龄林、近熟林、成熟林及过熟林生物量调查,探讨了不同龄组山杨天然次生林单株木、林分、林下植被和枯落物的生物量及群落碳储量的时空变化规律。结果表明:随林龄的增大,山杨天然次生林木和各器官生物量总体呈增加趋势,树干所占比例增加,中龄林增加尤为明显;林下植被层、枯落物层生物量随林龄增大呈增加趋势。群落总碳储量的空间分布序列是:乔木层〉枯落物层〉林下植被层。幼龄林、中龄林、近熟林、成熟林和过熟林群落的碳储量分别为27.146 6、53.545 1、60.889 8、77.915 8、79.135 3t.hm-2,乔木层碳储量分别为22.206 5、47.215 7、52.056 3、68.445 3、68.773 1 t.hm-2,枯落物层和林下植被层碳储量平均值分别为5.814 4、2.172 7 t.hm-2。乔木层、枯落物层和林下植被层碳储量占总量的平均率分别为86.05%、10.39%和3.57%。研究认为山杨天然次生林群落碳储量随林龄增加的变化规律明显,碳汇潜力巨大;中龄林为碳储量增长迅速期,且持续较长一段时间,是林分管理的关键阶段;自然稀疏有利于促进林木生长,林分碳储量并未随林分密度下降而减小。  相似文献   
978.
Rewilding has been an increasingly popular tool to restore plant–animal interactions and ecological processes impaired by defaunation. However, the reestablishment of such processes has seldom been assessed. We investigated the restoration of ecological interactions following the reintroduction of the brown howler monkey (Alouatta guariba) to a defaunated Atlantic forest site. We expected the reintroduction to restore plant–animal interactions and interactions between howlers and dung beetles, which promote secondary seed dispersal. We estimated the number of interactions expected to be restored by the reintroduction to provide the baseline interaction richness that could be restored. We followed the reintroduced howler monkeys twice a week for 24 months (337 hours total) to assess their diet. We used howler monkey dung in secondary seed dispersal experiments with 2484 seed mimics to estimate the removal rates by dung beetles and collected the beetles to assess community attributes. We compared the potential future contribution of howler monkeys and other frugivores to seed dispersal based on the seed sizes they disperse in other areas where they occur. In 2 years, howler monkeys consumed 60 animal-dispersed plant species out of the 330 estimated. Twenty-one dung beetle species were attracted to experimentally provided dung; most of them were tunnelers, nocturnal, and large-sized (>10 mm). On average 30% (range 0–100%) of the large seed mimics (14 mm) were moved by dung beetles. About 91% of the species consumed by howlers (size range 0.3–34.3 mm) overlapped in seed size with those removed by dung beetles. In our study area, howler monkeys may consume more large-seeded fruit species than most other frugivores, highlighting their potential to affect forest regeneration. Our results show reintroductions may effectively restore ecological links and enhance ecological processes.  相似文献   
979.
中国地区太阳分光辐射观测网的建立与仪器标定   总被引:14,自引:1,他引:13  
大规模的太阳分光地基联网观测不但能够直接为该项研究提供基础数据,同时也可为卫星遥感提供地表订正.利用性能优越的LED型太阳光度计,依托中国生态研究网络(CERN)分布在中国各地的观测站,建立了标准的太阳分光辐射观测网.利用Langley定标法结合量值传递定标法对观测网所有光度计的标定方法及误差分析表明,不同光度计间的同步观测结果(相对标准偏差小于3%)以及与CIMEL光度计的观测结果间(相对偏差小于5%)有很好的一致性,证实了观测结果的准确性以及该类型光度计及其观测网的稳定性和可靠性.  相似文献   
980.
During two campaigns in winter 2004, size segregated impactor samples (0.1-10 microm) and filter samples were taken in two Central European cities (Vienna, Austria and Ljubljana, Slovenia). The impactor samples were analyzed for major inorganic ions and short-chain organic acids, total carbon (TC) and black carbon (BC). Maximum concentrations of total mass were 71.6 microg m(-3) in Vienna and 73.1 microg m(-3) in Ljubljana. Minimum concentrations in Vienna were only half those in Ljubljana. The BC content of the aerosol was similar (ca. 8%), but the BC/TC ratio was higher in Vienna than in Ljubljana (0.39 vs. 0.29), reflecting the different contribution of diesel traffic emissions. The mass median diameters of the submicron size distributions of all major fractions (total mass, TC, BC and SO(4)(2-)) were smaller in Vienna (0.43 microm, 0.41 microm, 0.38 microm and 0.48 microm, respectively) than in Ljubljana (0.55 microm, 0.44 microm, 0.42 microm and 0.60 microm, respectively). Impactor/filter ratios for total mass were 0.79 in Vienna and 0.82 in Ljubljana, while the ratios for BC were 0.56 in Vienna and 0.49 in Ljubljana. An estimation of the mixing state of accumulation mode BC indicated that 33% and 37% of BC, respectively, are mixed externally to the aerosol in the accumulation size range in Vienna and Ljubljana.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号