首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   8篇
  国内免费   60篇
安全科学   1篇
废物处理   3篇
综合类   76篇
基础理论   54篇
污染及防治   32篇
评价与监测   1篇
  2022年   2篇
  2020年   2篇
  2019年   4篇
  2018年   3篇
  2017年   1篇
  2016年   6篇
  2015年   6篇
  2014年   6篇
  2013年   23篇
  2012年   14篇
  2011年   7篇
  2010年   4篇
  2009年   12篇
  2008年   1篇
  2007年   8篇
  2006年   3篇
  2005年   11篇
  2004年   7篇
  2003年   4篇
  2002年   5篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   7篇
  1997年   3篇
  1996年   5篇
  1995年   6篇
  1994年   2篇
  1992年   4篇
  1991年   1篇
  1988年   1篇
排序方式: 共有167条查询结果,搜索用时 328 毫秒
51.
多环芳烃光降解研究进展   总被引:5,自引:0,他引:5  
概述了多环芳烃(Polycyclic Aromatic Hydrocarbons,PAHs)在液相、固相和气相介质中的光降解过程及应用定量结构-性质关系(Quantitative Structure-Property Relationships,QSPR)模型预测PAHs光降解的研究进展.在此基础上,对今后一段时期PAHs光降解研究提出几点看法.  相似文献   
52.
冰晶中双氧水的UV光解   总被引:1,自引:1,他引:0  
本文采用253.7 nm的紫外灯光解冰晶中的双氧水,研究其光解率随光照时间和温度的变化.以及Cl~-,SO_4~(2-)和CO_3~(2-)对其降解的影响,结果表明,相同条件下三种离子对其影响大小依次为:Cl~->SO_4~(2-)>CO_3~(2-).对比冰晶和水溶液中双氧水的光解,冰晶中双氧水的光解速率低于水溶液中双氧水的光解速率.紫外-可见光谱(UV-vis)分析其光解产物,没有发现新的物质生成.由此可以认为,冰晶中双氧水主要在冰晶笼子中进行反应,少部分在类似液体层(QLL)中降解.  相似文献   
53.
毒草胺在环境中的降解特性研究   总被引:1,自引:0,他引:1  
毒草胺是一种被广泛应用的农药,其在环境中的降解特性备受关注。文章采用室内模拟试验方法,研究了毒草胺的光解、水解及土壤降解特性。研究结果表明,毒草胺在光强为2 370l x、紫外强度为13.5μW.cm-2的人工光源氙灯条件下,光解半衰期为2.5 h,较易光解。25℃时在pH值为5.0、7.0和9.0的缓冲水溶液中,降解半衰期分别为147.5、173.3和239.0 d;50℃时半衰期分别为15.2、27.0和42.3 d,结果显示温度对其降解速率影响较大,温度增加,水解速率明显加快,水解半衰期降低约6~10倍。该药在江西红壤中降解半衰期为46.5 d,在太湖水稻土、东北黑土中降解半衰期分别为6.4和7.9 d,比较容易降解,主要为微生物降解。结果表明毒草胺在水体中具有一定的稳定性,尤其在避光条件下难以降解。但在土壤中,比较容易被微生物降解。  相似文献   
54.
新农药氯虫酰胺在醇液中的光解   总被引:1,自引:0,他引:1  
分别以氙灯和紫外灯为光源,对氯虫酰胺在甲醇和乙醇中的光解动力学及降解机理进行了研究。结果表明,在氙灯和紫外照射下,氯虫酰胺在甲醇和乙醇中的光解符合一级反应动力学规律。在模拟太阳光氙灯辐射下,氯虫酰胺在甲醇和乙醇中的光解半衰期分别为1.58h和2.57h,而紫外光辐射下分别为1.49min和1.60min。采用LC-MS对氯虫酰胺光解产物进行分离和鉴定,推断氯虫酰胺在醇中的光解途径主要涉及到分子环合和重排生成光解产物A[2-(2-溴-4H-吡唑并[1,5.d]吡啶并[3,2-b]B,4]恶嗪-4-基亚氨基)-5-氯-N,3-二甲基苯甲酰胺]和B[2-(3-溴-1-(3-羟基吡啶-2-基)-1H-吡唑-5-基)-6-氯-3,8-二甲基喹啉-4(3H)-酮1。  相似文献   
55.
三唑酮在水中的光化学降解及其影响因素   总被引:9,自引:0,他引:9  
以太阳光和高压汞灯为光源,研究了水溶液中三唑酮光化学降解的影响因子。结果表明:在不同光源和透光介质下,三唑酮的降解能力从大到小依次为:石英试管+高压汞灯、玻璃试管+高压汞灯、石英试管+太阳光、玻璃试管+太阳光、暗室;水溶液中三唑酮初始浓度越高,其光降解率越低,呈负相关关系;丙酮对三唑酮在水中的光解有极显著的光敏作用,光敏效率与丙酮添加量有显著相关性;三唑酮的光解实质为光氧化作用,溶解氧含量对三唑酮光解有重大影响。  相似文献   
56.
用激光闪光光解技术研究了水相中二甲基硫(DMS)与羟基自由基(·OH)的反应机理,并讨论了溶液pH值和O2对该反应的影响,进而比较了气液相DMS与·OH反应的不同,初步评估了由·OH氧化引起的海洋和大气液相中DMS的寿命.结果表明:在pH 6-9时, ·OH会与DMS反应生成·DMSOH, ·DMSOH在水相中继续与DMS反应生成(DMS) 2, (DMS) 2与氧气的反应速度很慢,其衰减受pH影响较大.  相似文献   
57.
The UV (254 nm) and UV/VUV (254/185 nm) photolysis of two anti-inflammatory drugs, ibuprofen and ketoprofen, have been studied in aqueous solutions as a possible process for the removal of non-biodegradable compounds.We have examined the effects of dissolved oxygen and initial target concentration. Upon irradiation at 254 nm, the decomposition rate of ketoprofen is almost forty times higher as it of ibuprofen whilst VUV irradiation only increased the ibuprofen decomposition rate. The presence of dissolved oxygen accelerated the photodegradation of ibuprofen, whereas no effect was observed on the degradation of ketoprofen. The maximum quantum yield for the phototransformation was 0.2. The rate of mineralization in both cases was ∼60%, even after 1 h of treatment and this suggests the formation of stable by-products which were identified using GC-MS and HPLC-MS, respectively.  相似文献   
58.
才满  李艳玲  杜克久 《化工环保》2014,35(3):219-223
介绍了溴代阻燃剂十溴联苯醚(BDE-209)环境修复技术的研究进展。从光降解、零价铁降解、生物降解3个方面对BDE-209的降解机理和降解后的产物进行了介绍。BDE-209经光照、厌氧微生物、零价铁的脱溴作用后,降解成低溴代联苯醚产物;好氧微生物利用低溴代联苯醚作为生长碳源,将其在酶的作用下开环降解,进入三羧酸循环或彻底分解成CO2和H2O。提出应采用多种方法协同作用,更有效地降解多溴联苯醚化合物。  相似文献   
59.
新型除草剂快杀稗在水田环境中归宿的研究   总被引:11,自引:1,他引:11  
快杀稗为新型选择性水田除草剂,正在世界各地实验推广.快杀稗在太阳光下,纯水中稳定,田水中光解较快.在模拟太阳光的紫外光下(即光解反应器内),在灭菌的田水中光解较慢,H_2O_2可大大加快光解速率,主要光解产物为3,7-二氯喹啉.在pH8的水中稳定,不易为微生物降解,几乎不与水田底泥结合,且不易挥发.在田间,快杀稗在30天内消解93—99%,其中第一天消解约50%.稻田底泥中快杀稗含量很低.可以推测,快杀稗污染环境的潜在危险性较小.  相似文献   
60.
不同工艺参数下纳米光催化分解甲醛试验研究   总被引:3,自引:0,他引:3  
在不同的工艺参数下对目前室内典型的污染气体甲醛进行了一系列纳米光催化分解模拟试验,结果表明:(1)采用主波长为254nm的紫外灯对甲醛有更好的分解效率;(2)甲醛的分解效率随着紫外线光强、制备有纳米光催化薄膜材料的玻璃管内径的增加而增加;(3)两根不同内径的玻璃管同心圆状排列具有最高的甲醛分解效率;(4)有一个最佳的循环风速,在此风速下对甲醛的纳米光催化分解效率最高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号