首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   3篇
  国内免费   2篇
环保管理   13篇
综合类   4篇
基础理论   8篇
评价与监测   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2006年   1篇
  2004年   2篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有26条查询结果,搜索用时 31 毫秒
11.
Abstract: Conservation prioritization usually focuses on conservation of rare species or biodiversity, rather than ecological processes. This is partially due to a lack of informative indicators of ecosystem function. Biological soil crusts (BSCs) trap and retain soil and water resources in arid ecosystems and function as major carbon and nitrogen fixers; thus, they may be informative indicators of ecosystem function. We created spatial models of multiple indicators of the diversity and function of BSCs (species richness, evenness, functional diversity, functional redundancy, number of rare species, number of habitat specialists, nitrogen and carbon fixation indices, soil stabilization, and surface roughening) for the 800,000‐ha Grand Staircase‐Escalante National Monument (Utah, U.S.A.). We then combined the indicators into a single BSC function map and a single BSC biodiversity map (2 alternative types of conservation value) with an unweighted averaging procedure and a weighted procedure derived from validations performance. We also modeled potential degradation with data from a rangeland assessment survey. To determine which areas on the landscape were the highest conservation priorities, we overlaid the function‐ and diversity‐based conservation‐value layers on the potential degradation layer. Different methods for ascribing conservation‐value and conservation‐priority layers all yielded strikingly similar results (r= 0.89–0.99), which suggests that in this case biodiversity and function can be conserved simultaneously. We believe BSCs can be used as indicators of ecosystem function in concert with other indicators (such as plant‐community properties) and that such information can be used to prioritize conservation effort in drylands.  相似文献   
12.
The Soil and Water Assessment Tool (SWAT) is one of the most widely used watershed models for simulating hydrology in response to agricultural management practices. However, limited studies have been performed to evaluate the SWAT model's ability to estimate daily and monthly evapotranspiration (ET) in semiarid regions. ET values were simulated using ArcSWAT 2012 for a lysimeter field managed under dryland conditions at the USDA‐ARS Conservation and Production Research Laboratory at Bushland, Texas, and compared with measured lysimeter values from 2000 to 2010. Two scenarios were performed to compare SWAT's performance: (1) use of default plant leaf area index (LAI) values in the embedded plant database and (2) adjusted LAI values. Scenario 1 resulted in an “unsatisfactory” Nash‐Sutcliffe efficiency (NSE) of 0.42 and 0.38 for the calibration and validation periods, respectively. Scenario 2 resulted in a “satisfactory” NSE value for the calibration period while achieving a “good” NSE of 0.70 for the validation period. SWAT generally underestimated ET at both the daily and monthly levels. Overestimation during fallow years may be due to the limitations of the pothole function used to simulate furrow diking. Users should be aware of potential errors associated with using default LAI parameters. Inaccuracies in ET estimation may also stem from errors in the plant stress functions, particularly when evaluating water management practices for dryland watersheds.  相似文献   
13.
The natural grassland ecosystem of the Xilingol steppe has traditionally been the source of the most productive and highest quality agriculture in northern China. Unfortunately, the area is now experiencing degradation due to resource overuse. In an attempt to forecast grassland production and to sustain the ecosystem, we built a time-dependent simulation model of the ecosystem based on long-range weather forecasts (several weeks to several months). The model incorporated five state variables including above- and belowground biomass, the amount of standing dead plant material, livestock (sheep) weight, and the amount of excrement per unit ground area. Within the model, solar light energy is fixed by grassland vegetation and flows through the other variables via a variety of organism-environment interactions. The model was written using a set of simultaneous differential equations and was numerically analyzed. The values of the time-dependent parameters controlling energy flow were determined based on data accumulated in experiments and field surveys executed at a grassland experimental station located in Xilingol, as well as by reference to related literature. We used daily meteorological data including air temperature and rainfall recorded at the Xilinhot Meteorological Observatory. Simulated results for several stocking densities coincided well with the data of aboveground plant biomass observed at the experimental station in 1990, 1993, and 1997. We obtained reasonable simulation results for five stocking densities, three air temperature patterns, and five rainfall patterns. When a month-long drought, which sometimes occurs in this area, was forecast by a local weather station, a decrease in grassland production was forecast by the model. Such forecasts will assist in the management of livestock, forage preservation, and grassland conservation.  相似文献   
14.
以地处半干旱地区的北京西部山区为例,利用研究区森林类型的季相特征、已有的少部分林相图、Google Earth免费影像数据等信息选择不同坡向的相同森林类型做训练样本,通过加入其他辅助数据(海拔和坡向数据),来提高Landsat TM影像的森林类型分类精度,同时对比了基于像元和面向对象方法提取森林类型的效果。结果表明:1)就半干旱山区的森林类型划分来说,TM影像的TM4、TM5、TM4-TM2及辅助数据DEM和坡向可作为TM影像森林类型划分的最佳数据源。2)单独加入海拔信息,阔叶林的提取精度提高23%,针叶林和混交林的分类精度只提高了4%~5%;单独加入坡向信息,阔叶林的提取精度只提高21%,但是针叶林和混交林的分类精度则分别提高了13%、18%,显著优于单独加入海拔信息的效果。同时加入海拔信息和坡向信息,至少可以准确区分出约70%以上的针叶林、阔叶林和混交林。3)就本研究区而言,坡向比海拔更有效地辅助提高森林分类精度。4)就混淆矩阵数据而言,面向对象的分类方法比基于像元分类结果总体精度低3%,Kappa系数低4%,但面向对象的分类结果更加符合研究区实际情况。该研究对中分辨率影像应用于半干旱山区森林类型划分具有一定的借鉴意义。  相似文献   
15.
Colonial burrowing herbivores can modify vegetation structure, create belowground refugia, and generate landscape heterogeneity, thereby affecting the distribution and abundance of associated species. Black‐tailed prairie dogs (Cynomys ludovicianus) are such a species, and they may strongly affect the abundance and composition of grassland bird communities. We examined how prairie dog colonies in the North American Great Plains affect bird species and community composition. Areas occupied by prairie dogs, characterized by low percent cover of grass, high percent cover of bare soil, and low vegetation height and density, supported a breeding bird community that differed substantially from surrounding areas that lacked prairie dogs. Bird communities on colony sites had significantly greater densities of large‐bodied carnivores (Burrowing Owls [Athene cunicularia], Mountain Plovers, [Charadrius montanus], and Killdeer [Charadrius vociferus]) and omnivores consisting of Horned Larks (Eremophila alpestris) and McCown's Longspurs (Rhynchophanes mccownii) than bird communities off colony sites. Bird communities off colony sites were dominated by small‐bodied insectivorous sparrows (Ammodramus spp.) and omnivorous Lark Buntings (Calamospiza melanocorys), Vesper Sparrows (Pooecetes gramineus), and Lark Sparrows (Chondestes grammacus). Densities of 3 species of conservation concern and 1 game species were significantly higher on colony sites than off colony sites, and the strength of prairie dog effects was consistent across the northern Great Plains. Vegetation modification by prairie dogs sustains a diverse suite of bird species in these grasslands. Collectively, our findings and those from previous studies show that areas in the North American Great Plains with prairie dog colonies support higher densities of at least 9 vertebrate species than sites without colonies. Prairie dogs affect habitat for these species through multiple pathways, including creation of belowground refugia, supply of prey for specialized predators, modification of vegetation structure within colonies, and increased landscape heterogeneity. Asociaciones de Comunidades de Aves de Pastizales con Perros de la Pradera en la Gran Llanura de Norte América  相似文献   
16.
Abstract:  Global climate change (GCC) can have profound effects on species whose ecology is governed primarily by climatic factors. The ecology of small mammals inhabiting semiarid Chile is strongly affected by the El Niño Southern Oscillation (ENSO). During La Niña events in this area, dry conditions prevail and species may disappear from the thorn-scrub habitat. Conversely, El Niño events bring high rainfall, and associated pulses of food trigger small-mammal population increases. We used capture–mark–recapture to study responses of the degu ( Octodon degus ), a dominant small mammal, to variation in rainfall over 18 years. In response to a recent trend toward wetter conditions, degus reached record-high densities and maintained more stable numbers in the area. Underlying mechanisms involved variation in adult survival, juvenile persistence, and fecundity linked to rainfall changes during consecutive years (i.e., rainfall phases). During prolonged droughts, degus had low survival and produced fewer offspring, with low persistence. Following high rainfall, these parameters reversed; consecutive wet years resulted in further increases. Weak declines in fecundity and adult survival and high persistence of juveniles explained delayed responses to deteriorating conditions in initial dry years. If GCC leads to increased frequency of El Niño events, we anticipate greater numerical dominance of degus in semiarid Chile and possible range expansion. Furthermore, degus have strong impacts on other small mammal and some plant species, are important prey species, and are agricultural pests and disease reservoirs. Hence, GCC has the potential to dramatically influence their ecology in northern Chile and to have cascading effects on other components of this system.  相似文献   
17.
Integrated watershed management (IWM) is a priority, especially in semiarid regions that are concurrently affected by population growth, land use change, soil erosion, and poor governance. In developing countries, IWM is often done without any support tool, scientific data, or deep knowledge of territory characteristics. The aim of this study was to present a case study to apply a decision support tool to prioritize areas for territory management. A simple, quantitative multi‐criteria analysis was applied in a semiarid basin of the Ecuadorian Andes to identify the zones of greatest concern for implementation of resource conservation and management practices at a local and regional scale. In addition to describing the current state of the conditions of this basin, our results suggest scenarios of change in relation to official population projections based on spatial analysis of land use change. Analysis resulted in a scattered distribution of priority values within the watershed, so a hierarchical rule was incorporated to define priorities at the subwatershed (SW) scale. Our analysis identified four SW of very high priority and urgent need to implement management practices. Based on projections of future change due to population growth and land cover change, the number of subbasins that require more attention was doubled. Finally, this study includes zones for management or conservation of the land, according to the Sustainable Development Goals.  相似文献   
18.
Abstract: Water managers in arid and semiarid regions increasingly view treated wastewater (effluent) as an important water resource. Artificial recharge basins allow effluent to seep into the ground relieving stressed aquifers, however these basins frequently clog due to physical, chemical, and biological processes. Likewise effluent is increasingly used to maintain perennial base flow for dry streambeds, however, little is known about the impact of effluent on streambed hydraulic conductivity and stream‐aquifer interactions. We address this issue by investigating: if a clogging layer forms, how the formation of a clogging layer alters stream‐aquifer connections, and what hydrologic factors control the formation and removal of clogging layers. We focused on the Upper Santa Cruz River, Arizona where effluent from the Nogales International Waste Water Treatment Plant sustains perennial flow. Monthly sampling, along a 30 km river reach, was done with two foci: physical streambed transformations and water source identification using chemical composition. Historical dataset were included to provide a larger context for the work. Results show that localized clogging occurs in the Upper Santa Cruz River. The clogging layers perch the stream and shallow streambed causing desaturation below the streambed. With these results, a conceptual model of clogging is established in the context of a semiarid hydrologic cycle: formation during the hot premonsoon months when flow is nearly constant and removal by large flood flows (>10 m3/s) during the monsoon season. However, if the intensity of flooding during the semiarid hydrologic cycle is lessened, the dependent riparian area can experience a die off. This conceptual model leads us to the conclusion that effluent dominated riparian systems are inherently unstable due to the clogging process. Further understanding of this process could lead to improved ecosystem restoration and management.  相似文献   
19.
Gondim, Rubens S., Marco A.H. de Castro, Aline de H.N. Maia, Sílvio R.M. Evangelista, and Sérgio C. de F. Fuck, Jr., 2012. Climate Change Impacts on Irrigation Water Needs in the Jaguaribe River Basin. Journal of the American Water Resources Association (JAWRA) 48(2): 355‐365. DOI: 10.1111/j.1752‐1688.2011.00620.x Abstract: Climate change is conceptually referred to as a modification to the average of climate variables and their natural variability, due to both natural and anthropogenic driving forces, such as greenhouse gas emissions. Climate change potentially impacts rainfall, temperature, and air humidity, which have relationship with plant evapotranspiration and consequently to irrigation water needs (IWN). The purpose of this research is to assess climate change impacts on irrigation water demand, based on climatic impacts stemming from future greenhouse gas emission scenarios. The study area includes eight municipalities in the Jaguaribe River Basin, located in the Ceará State of semiarid northeast Brazil. The FAO Penman‐Monteith method is used for the calculation of a reference evapotranspiration with limited climatic data. IWN projections are calculated using bias‐corrected climate projections for monthly rainfall and surface temperature derived from the United Kingdom’s Hadley Centre Regional Climate Model simulations. The increase in the average IWN is projected to be 7.9 and 9.1% over the period 2025‐2055 for the A2 and B2 scenarios, respectively with respect to 1961‐1990 baseline.  相似文献   
20.
半干旱地区生态环境比较脆弱,而油田开采生产活动、人类生活活动与生态环境之间相互影响,相互制约。为保障油田生产及生态环境的协调发展,对半干旱油田开采区进行生态建设显得尤为重要。对油田开采区进行功能分区,将开采区分为生态园林绿化区、生态防护林与景观生态建设区、水土流失治理区、施工区及取弃土场土地复垦区等几个区域。根据不同功能区特点,提出生态建设的具体方法和对策,指导半干旱油田开采区生产生活活动可持续发展。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号