首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   278篇
  免费   17篇
  国内免费   226篇
安全科学   21篇
废物处理   18篇
环保管理   5篇
综合类   263篇
基础理论   127篇
污染及防治   77篇
评价与监测   8篇
社会与环境   2篇
  2023年   5篇
  2022年   13篇
  2021年   12篇
  2020年   25篇
  2019年   20篇
  2018年   32篇
  2017年   36篇
  2016年   32篇
  2015年   50篇
  2014年   24篇
  2013年   58篇
  2012年   33篇
  2011年   48篇
  2010年   20篇
  2009年   15篇
  2008年   5篇
  2007年   20篇
  2006年   10篇
  2005年   7篇
  2004年   3篇
  2003年   1篇
  2002年   9篇
  2001年   4篇
  2000年   9篇
  1999年   5篇
  1998年   4篇
  1997年   2篇
  1996年   7篇
  1995年   4篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1972年   1篇
排序方式: 共有521条查询结果,搜索用时 15 毫秒
21.
采用电解法和离子交换法回收洗相废水中的银.结果表明,电解法对高浓度含银洗相废水的银回收处理是一种行之有效的方法.对于中低浓度洗相废水中的银的回收,采用4%硫酸再生IRA-68离子交换树脂,树脂的交换能力可以增加4倍,再生时由于已交换的银被直接固定在树脂上,结果使得再生剂处置和银回收过程更加简单方便.IRA-68离子交换树脂回收中低浓度洗相废水中银的技术具有银回收效率更高、离子交换运行时间更长和操作更为简便等优点,使得传统的离子交换技术得到极大的改进和提高.  相似文献   
22.
鲢鱼放养控制北京城市河湖水华试验研究   总被引:2,自引:1,他引:1  
介绍了利用鲢鱼控制北京城市河湖水华的试验研究,通过不同放养密度(0、17、51和103 g/m3)的现场围隔试验,对鲢鱼放养对水体水质和浮游生物的影响进行了分析.研究结果表明,鲢鱼放养使有鱼围隔中浮游生物量极低,从而使浮游植物基本不受浮游动物影响,而直接受鱼类影响;同时,中等密度(51 g/m3)的鲢鱼放养使水华蓝藻和微小藻的生长均得到了有效抑制,使藻类生物量最低.  相似文献   
23.
In this paper, we show that concentrations of manufactured carbon-based nanoparticles (MCNPs) in aquatic sediments will be negligible compared to levels of black carbon nanoparticles (BCNPs). This is concluded from model calculations accounting for MCNP sedimentation fluxes, removal rates due to aggregation or degradation, and MCNP burial in deeper sediment layers. The resultant steady state MCNP levels are compared with BCNP levels calculated from soot levels in sediments and weight fractions of nanosized fractions of these soot particles. MCNP/BCNP ratios range from 10−7 to 10−4 (w:w). This suggests that the often acclaimed effect of MCNPs on organic pollutant binding and bioavailability will likely be below the level of detection if natural BCNPs are present, even if binding to MCNP is one to two orders of magnitude stronger than to BCNPs. Furthermore, exposure and toxic effects of MCNPs in sediments and soils will be negligible compared to that of BCNPs.  相似文献   
24.
Cobalt and silver are toxic for cells, but mechanisms of this toxicity are largely unknown. Analysis of Corynebacterium glutamicum proteome from cells grown in control and cobalt or silver enriched media was performed by two dimensional gel electrophoresis (2DE) followed by mass spectrometry. Our results indicate that the cell adapted to cobalt stress by inducing five defense mechanisms: Scavenging of free radicals, promotion of the generation of energy, reparation of DNA, reparation and biogenesis of Fe-S cluster proteins and supporting and reparation of cell wall. In response to the detoxification of Ag+ many proteins were up-regulated, which involved reparation of damaged DNA, minimizing the toxic effect of reactive oxygen species (ROS) and energy generation. Overexpression of proteins involved in cell wall biosynthesis (1,4-alpha-glucan branching enzyme and nucleoside-diphosphate-sugar epimerase) upon cobalt stress and induction of proteins involved in energy metabolism (2-methylcitrate dehydratase and 1, 2-methylcitrate synthase) upon silver demonstrate the potential of these enzymes as biomarkers of sub-lethal Ag+ and Co toxicity.  相似文献   
25.
Zhang P  He X  Ma Y  Lu K  Zhao Y  Zhang Z 《Chemosphere》2012,89(5):530-535
Along with the increasing utilization of engineered nanoparticles, there is a growing concern for the potential environmental and health effects of exposure to these newly designed materials. Understanding the behavior of nanoparticles in the environment is a basic need. The present study aims to investigate the distribution and fate of ceria nanoparticles in an aquatic system model which consists of sediments, water, hornworts, fish and snails, using a radiotracer technique. Concentrations of ceria in the samples at regular time intervals were measured. Ceria nanoparticles were readily removed from the water column and partitioned between different organisms. Both snail and fish have fast absorption and clearance abilities. Hornwort has the highest bioaccumulation factors. At the end of the experiment, sediments accumulated most of the nanoparticles with a recovery of 75.7 ± 27.3% of total ceria nanoparticles, suggesting that sediments are major sinks of ceria nanoparticles.  相似文献   
26.
Ecotoxicity of nanoparticles of CuO and ZnO in natural water   总被引:1,自引:0,他引:1  
The acute toxicity of CuO and ZnO nanoparticles in artificial freshwater (AFW) and in natural waters to crustaceans Daphnia magna and Thamnocephalus platyurus and protozoan Tetrahymena thermophila was compared. The L(E)C50 values of nanoCuO for both crustaceans in natural water ranged from 90 to 224 mg Cu/l and were about 10-fold lower than L(E)C50 values of bulk CuO. In all test media, the L(E)C50 values for both bulk and nanoZnO (1.1-16 mg Zn/l) were considerably lower than those of nanoCuO. The natural waters remarkably (up to 140-fold) decreased the toxicity of nanoCuO (but not that of nanoZnO) to crustaceans depending mainly on the concentration of dissolved organic carbon (DOC). The toxicity of both nanoCuO and nanoZnO was mostly due to the solubilised ions as determined by specific metal-sensing bacteria.  相似文献   
27.
Laboratory batch and column experiments were conducted to investigate the immobilization of phosphorus (P) in soils using synthetic magnetite nanoparticles stabilized with sodium carboxymethyl cellulose (CMC-NP). Although CMC-stabilized magnetite particles were at the nanoscale, phosphorus removal by the nanoparticles was less than that of microparticles (MP) without the stabilizer due to the reduced P reactivity caused by the coating. The P reactivity of CMC-NP was effectively recovered when cellulase was added to degrade the coating. For subsurface non-point P pollution control for a water pond, it is possible to inject CMC-NP to form an enclosed protection wall in the surrounding soils. Non-stabilized “nanomagnetite” could not pass through the soil column under gravity because it quickly agglomerated into microparticles. The immobilized P was 30% in the control soil column, 33% when treated by non-stabilized MP, 45% when treated by CMC-NP, and 73% when treated by both CMC-NP and cellulase.  相似文献   
28.
Indiscriminate release of metal oxide nanoparticles (NPs) into the environment due to anthropogenic activities has become a serious threat to the ecological system including plants. The present study assesses the toxicity of nano-CuO on rice (Oryza sativa cv. Swarna) seedlings. Three different levels of stress (0.5 mM, 1.0 mM and 1.5 mM suspensions of copper II oxide, <50 nm particle size) were imposed and seedling growth performance was studied along control at 7 and 14 d of experiment. Modulation of ascorbate–glutathione cycle, membrane damage, in vivo ROS detection, foliar H2O2 and proline accumulation under nano-CuO stress were investigated in detail to get an overview of nano-stress response of rice. Seed germination percentage was significantly reduced under stress. Higher uptake of Evans blue by nano-CuO stressed roots over control indicates loss of root cells viability. Presence of dark blue and deep brown spots on leaves evident after histochemical staining with NBT and DAB respectively indicate severe oxidative burst under nano-copper stress. APX activity was found to be significantly increased in 1.0 and 1.5 mM CuO treatments. Nevertheless, elevated APX activity might be insufficient to scavenge all H2O2 produced in excess under nano-CuO stress. That may be the reason why stressed leaves accumulated significantly higher H2O2 instead of having enhanced APX activity. In addition, increased GR activity coupled with isolated increase in GSH/GSSG ratio does not seem to prevent cells from oxidative damages, as evident from higher MDA level in leaves of nano-CuO stressed seedlings over control. Enhanced proline accumulation also does not give much protection against nano-CuO stress. Decline in carotenoids level might be another determining factor of meager performance of rice seedlings in combating nano-CuO stress induced oxidative damages.  相似文献   
29.
Acid mine water from in situ chemical leaching of uranium (Straz pod Ralskem, Czech Republic) was treated in laboratory scale experiments by zero-valent iron nanoparticles (nZVI). For the first time, nZVI were applied for the treatment of the real acid water system containing the miscellaneous mixture of pollutants, where the various removal mechanisms occur simultaneously. Toxicity of the treated saline acid water is caused by major contaminants represented by aluminum and sulphates in a high concentration, as well as by microcontaminants like As, Be, Cd, Cr, Cu, Ni, U, V, and Zn. Laboratory batch experiments proved a significant decrease in concentrations of all the monitored pollutants due to an increase in pH and a decrease in oxidation-reduction potential related to an application of nZVI. The assumed mechanisms of contaminants removal include precipitation of cations in a lower oxidation state, precipitation caused by a simple pH increase and co-precipitation with the formed iron oxyhydroxides. The possibility to control the reaction kinetics through the nature of the surface stabilizing shell (polymer vs. FeO nanolayer) is discussed as an important practical aspect.  相似文献   
30.
The effects of TiO2 nanoparticles on the transport of Cu through four different soil columns were studied. For two soils (HB and DX), TiO2 nanoparticles acted as a Cu carrier and facilitated the transport of Cu. For a third soil (BJ) TiO2 nanoparticles also facilitated Cu transport but to a much lesser degree, but for a fourth soil (HLJ) TiO2 nanoparticles retarded the transport of Cu. Linear correlation analysis indicated that soil properties rather than sorption capacities for Cu primary governed whether TiO2 nanoparticles-facilitated Cu transport. The TiO2-associated Cu of outflow in the Cu-contaminated soil columns was significantly positively correlated with soil pH and negatively correlated with CEC and DOC. During passage through the soil columns 46.6-99.9% of Cu initially adsorbed onto TiO2 could be “stripped” from nanoparticles depending on soil, where Cu desorption from TiO2 nanoparticles increased with decreasing flow velocity and soil pH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号