全文获取类型
收费全文 | 1127篇 |
免费 | 320篇 |
国内免费 | 31篇 |
专业分类
安全科学 | 21篇 |
废物处理 | 6篇 |
环保管理 | 510篇 |
综合类 | 567篇 |
基础理论 | 134篇 |
污染及防治 | 112篇 |
评价与监测 | 30篇 |
社会与环境 | 54篇 |
灾害及防治 | 44篇 |
出版年
2024年 | 15篇 |
2023年 | 21篇 |
2022年 | 37篇 |
2021年 | 36篇 |
2020年 | 37篇 |
2019年 | 35篇 |
2018年 | 50篇 |
2017年 | 42篇 |
2016年 | 39篇 |
2015年 | 57篇 |
2014年 | 55篇 |
2013年 | 71篇 |
2012年 | 96篇 |
2011年 | 77篇 |
2010年 | 57篇 |
2009年 | 54篇 |
2008年 | 64篇 |
2007年 | 63篇 |
2006年 | 71篇 |
2005年 | 45篇 |
2004年 | 37篇 |
2003年 | 34篇 |
2002年 | 35篇 |
2001年 | 32篇 |
2000年 | 16篇 |
1999年 | 22篇 |
1998年 | 18篇 |
1997年 | 18篇 |
1996年 | 10篇 |
1995年 | 11篇 |
1994年 | 13篇 |
1993年 | 14篇 |
1992年 | 5篇 |
1991年 | 11篇 |
1990年 | 13篇 |
1989年 | 14篇 |
1988年 | 12篇 |
1987年 | 11篇 |
1986年 | 8篇 |
1985年 | 8篇 |
1984年 | 6篇 |
1983年 | 8篇 |
1982年 | 18篇 |
1981年 | 13篇 |
1980年 | 14篇 |
1979年 | 13篇 |
1978年 | 5篇 |
1977年 | 5篇 |
1975年 | 9篇 |
1972年 | 5篇 |
排序方式: 共有1478条查询结果,搜索用时 15 毫秒
521.
朱华 《中国安全生产科学技术》2013,9(4):67-71
介绍了防尘口罩的结构及选用时应注意的一些问题,分析了作为防尘口罩核心组件的滤料的过滤机制。论述了一些非织造布材料和非织造布加工方式对于防尘口罩滤料生产的优点和不足之处。对于广泛应用于口罩滤料的聚丙烯材料及滤料的主要加工方式——熔喷法非织造布生产技术,进行了重点介绍。同时也简要介绍了为完善口罩的综合性能而采用的非织造布复合技术。最后研究分析了提高口罩过滤效率的一种非常重要的方法——非织造布驻极加工方法,并对目前防尘口罩应用中存在的问题进行了简要的分析。 相似文献
522.
随着我国城市化的发展,城市水文问题日益突出。城市排水、防洪和水污染等问题的解决,都有赖于城市降雨径流理论的发展和计算模型的改进。介绍了日本土木研究所创立的修正RRL法,并对该模型提出了改进的建议。 相似文献
523.
针对桂北铅锌尾矿中重金属在水平方向上的释放、迁移和转化问题,利用尾矿为研究对象,通过降雨模拟装置进行径流冲刷试验,分析冲刷过程中尾矿重金属浓度和形态的变化。结果表明,在径流冲刷过程中,尾矿中重金属浓度整体呈下降趋势,深度对尾矿中重金属浓度变化的影响不明显,同一深度的尾矿,粒径与其重金属释放量呈负相关关系,粒径小于75μm时重金属Zn减少率高达24%。径流作用下,尾矿的粒径大小与迁移能力成反比。径流冲刷前后,尾矿中重金属含量下降,Cd,Zn和Pb的含量在弱酸提取态下分别减少2.4%,1.6%和0.3%。随降雨时间延长,液相可溶态重金属浓度未发生显著变化,固相颗粒态重金属浓度持续降低,液相颗粒态重金属含量减少最明显。 相似文献
524.
Characterization and prediction of highway runoff constituent event mean concentration 总被引:3,自引:0,他引:3
Highway stormwater runoff quality data were collected from throughout California during 2000-2003. Samples were analyzed for conventional pollutants (pH, conductivity, hardness, and temperature); aggregates (TSS, TDS, TOC, DOC); total and dissolved metals (As, Cd, Cr, Cu, Ni, Pb, and Zn); and nutrients (NO(3)-N, TKN, total P, and ortho-P). Storm event and site characteristics for each sampling site were recorded. A statistical summary for chemical characteristics of highway runoff is provided based on statewide urban and non-urban highways. Constituent event mean concentrations (EMCs) were generally higher in urban highways than in non-urban highways. The chemical characteristics of highway runoff in California were compared with national highway runoff chemical characterization data. The results obtained in California were generally similar to those found in other states. The median EMC for Pb measured in studies conducted in previous decades was much higher than the current median Pb EMC in California. The lower Pb EMC in California compared to previous highway runoff monitoring is believed to be due to the elimination of leaded gasoline. An attempt was also made to identify surrogate constituents within a general family of water quality categories using Spearman correlations and selected pairs with Spearman coefficients greater than 0.8. The strongest correlations were observed among parameters associated with dissolved minerals (EC, TDS, and chloride); organic carbon (TOC and DOC); petroleum hydrocarbons (TPH and O & G); and particulate matter (TSS and turbidity). Within the metals category, total iron concentration was highly correlated with most total metal concentrations. The correlations between total and dissolved concentrations were all less than 0.8, even between total and dissolved concentrations of the same metals. Multiple linear regression (MLR) analyses were performed to evaluate the impact of various site and storm event variables on highway runoff constituent EMCs. Parameters found to have significant impacts on highway runoff constituent EMCs include: total event rainfall (TER); cumulative seasonal rainfall (CSR); antecedent dry period (ADP); contributing drainage area (DA); and annual average daily traffic (AADT). Surrounding land use and geographic regions were also determined to have a significant impact on runoff quality. The MLR model was also used to predict constituent EMCs. Model performance determined by comparing predicted and measured values showed good agreement for most constituents. 相似文献
525.
Christopher A. Ellison Quentin D. Skinner Katta J. Ready 《Journal of the American Water Resources Association》2006,42(1):55-68
Sage Creek in south‐central Wyoming is listed as impaired by the U.S. Environmental Protection Agency (USEPA) due to its sediment contribution to the North Platte River. Despite the magnitude of sediment impacts on streams, little research has been conducted to characterize patterns of sediment transport or to model suspended sediment concentration in many arid western U.S. streams. This study examined the relationship between stream discharge and suspended sediment concentration near the Sage Creek and North Platte River confluence from 1998 through 2003. The objectives were to determine patterns of stream discharge and suspended sediment concentration, produce a sediment prediction model, and compare sediment concentrations for the six‐year period. Stream discharge and suspended sediment transport responded rapidly to convective storms and spring runoff events. During the study period, events exceeding 0.23 m3/s accounted for 92 percent of the sediment load, which is believed to originate from erodible headwater uplands. Further analysis of these data indicates that time series modeling is superior to simple linear regression in predicting sediment concentration. Significant increases in suspended sediment concentration occurred in all years except 2003. This analysis suggests that a six‐year monitoring record was insufficient to factor out impacts from climate, geology, and historical sediment storage. 相似文献
526.
R. Edward Beighley Thomas Dunne John M. Melack 《Journal of the American Water Resources Association》2008,44(1):62-74
Abstract: The transport of water, sediment, dissolved and particulate chemicals, and bacteria from coastal watersheds affects the nearshore marine and estuarine waters. In southern California, coastal watersheds deliver water and associated constituents to the nearshore system in discrete pulses. To better understand the pulsed nature of these watersheds, frequency distributions of simulated runoff events are presented for: (1) three land use conditions (1929, 1998, 2050); (2) three time periods (all water years 1989‐2002), only El Nino years (1992, 1993, 1995, 1998); and only non‐El Nino years; and (3) three regions (watershed, uplands, and lowlands). At the watershed scale, there was a significant increase (>200%) in mean event runoff from 1929 to 2050 (0.4‐1.3 cm) due to localized urbanization, which shifted the dominant sources of runoff from the mountains in 1929 (78% of watershed runoff) to the coastal plane for 2050 conditions (51% of watershed runoff). Inter‐annual climate variability was strong in the rainfall and runoff frequency distributions, with mean event rainfall and runoff 66 and 60% larger in El Nino relative to non‐El Nino years. Combining urbanization and climate variability, 2050 land conditions resulted in El Nino years being five times more likely to produce large (>3.0 cm) runoff events relative to non‐El Nino years. Combining frequency distributions of event runoff with regional nutrient export relationships, we show that in El Nino years, one in five events produced runoff ≥2.5 cm and temporary nearshore nitrate and phosphate concentrations of 12 and 1.4 μM, respectively, or approximately 5‐10 times above ambient conditions. 相似文献
527.
Leroy F Heitz Shahram Khosrowpanah Jay Nelson 《Journal of the American Water Resources Association》2000,36(3):541-548
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments. 相似文献
528.
Arturo A. Keller Yi Zheng Timothy H. Robinson 《Journal of the American Water Resources Association》2004,40(3):721-735
ABSTRACT: Traditional approaches to establishing critical water quality conditions, based on statistical analysis of low flow conditions and expressed as a recurrence interval for low flow conditions (e.g., 7Q10), may be inappropriate for drier watersheds. The use of 7Q10 as a standard design flow assumes year‐round flow, but in these watersheds, 7Q10 is zero or very small. In addition, the increasing use of multiple year dynamic water quality models at daily time steps can supercede the use of steady state approaches. Many of these watersheds are also under increasing urbanization pressure, which accentuates the flashiness of runoff and the episodic nature of critical water quality conditions. To illustrate, the conditions in the Santa Clara River, California, are considered. A statistical analysis indicates that higher inorganic nitrogen concentrations correlate strongly with low flow. However, peaks in concentrations can occur during the first storms, particularly where nonpoint source contribution is significant. Critical conditions can thus occur at different flow regimes depending on the relative magnitude of flow and pollutant contributions from various sources. The use of steady state models for these dry semi‐urbanized watersheds based on 7Q10 flows is thus unlikely to accurately simulate the potential for exceeding water quality objectives. Dynamic simulation of water quality is necessary, and as the recent intense storm event sampling data indicate, the models should be formulated to consider even smaller time steps. This places increasing demand on computational resources and datasets to accurately calibrate the models at this temporal resolution. 相似文献
529.
Christopher J. Woltemade Timothy W. Hawkins Claire Jantz Scott Drzyzga 《Journal of the American Water Resources Association》2020,56(3):507-527
Changing climate and land cover are expected to impact flood hydrology in the Delaware River Basin over the 21st Century. HEC‐HMS models (U.S. Army Corps of Engineers Hydrologic Engineering Center‐Hydrologic Modeling System) were developed for five case study watersheds selected to represent a range of scale, soil types, climate, and land cover. Model results indicate that climate change alone could affect peak flood discharges by ?6% to +58% a wide range that reflects regional variation in projected rainfall and snowmelt and local watershed conditions. Land cover changes could increase peak flood discharges up to 10% in four of the five watersheds. In those watersheds, the combination of climate and land cover change increase modeled peak flood discharges by up to 66% and runoff volumes by up to 44%. Precipitation projections are a key source of uncertainty, but there is a high likelihood of greater precipitation falling on a more urbanized landscape that produces larger floods. The influence of climate and land cover changes on flood hydrology for the modeled watersheds varies according to future time period, climate scenario, watershed land cover and soil conditions, and flood frequency. The impacts of climate change alone are typically greater than land cover change but there is substantial geographic variation, with urbanization the greater influence on some small, developing watersheds. 相似文献
530.
Gregory J. McCabe David M. Wolock 《Journal of the American Water Resources Association》1999,35(6):1473-1484
ABSTRACT: April 1 snowpack accumulations measured at 311 snow courses in the western United States (U.S.) are grouped using a correlation-based cluster analysis. A conceptual snow accumulation and melt model and monthly temperature and precipitation for each cluster are used to estimate cluster-average April 1 snowpack. The conceptual snow model is subsequently used to estimate future snowpack by using changes in monthly temperature and precipitation simulated by the Canadian Centre for Climate Modeling and Analysis (CCC) and the Hadley Centre for Climate Prediction and Research (HADLEY) general circulation models (GCMs). Results for the CCC model indicate that although winter precipitation is estimated to increase in the future, increases in temperatures will result in large decreases in April 1 snowpack for the entire western U.S. Results for the HADLEY model also indicate large decreases in April 1 snowpack for most of the western US, but the decreases are not as severe as those estimated using the CCC simulations. Although snowpack conditions are estimated to decrease for most areas of the western US, both GCMs estimate a general increase in winter precipitation toward the latter half of the next century. Thus, water quantity may be increased in the western US; however, the timing of runoff will be altered because precipitation will more frequently occur as rain rather than as snow. 相似文献