首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6700篇
  免费   667篇
  国内免费   3793篇
安全科学   201篇
废物处理   198篇
环保管理   551篇
综合类   6142篇
基础理论   2424篇
污染及防治   836篇
评价与监测   360篇
社会与环境   297篇
灾害及防治   151篇
  2024年   57篇
  2023年   204篇
  2022年   368篇
  2021年   398篇
  2020年   342篇
  2019年   355篇
  2018年   359篇
  2017年   360篇
  2016年   443篇
  2015年   459篇
  2014年   531篇
  2013年   811篇
  2012年   659篇
  2011年   639篇
  2010年   501篇
  2009年   483篇
  2008年   437篇
  2007年   511篇
  2006年   499篇
  2005年   382篇
  2004年   330篇
  2003年   309篇
  2002年   263篇
  2001年   234篇
  2000年   215篇
  1999年   146篇
  1998年   107篇
  1997年   120篇
  1996年   105篇
  1995年   122篇
  1994年   78篇
  1993年   72篇
  1992年   46篇
  1991年   55篇
  1990年   43篇
  1989年   31篇
  1988年   16篇
  1987年   16篇
  1986年   10篇
  1985年   2篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1981年   4篇
  1980年   7篇
  1979年   5篇
  1978年   4篇
  1973年   1篇
  1972年   2篇
  1971年   2篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
501.

The denaturing gradient gel electrophoresis (DGGE) method was applied to determine the relative genetic complexity of microbial communities in flooded paddy soil treated with herbicide quinclorac (3,7-dichloro-8-quinoline-carboylic acid). The results obtained showed a significant effect of quinclorac on the development of bacterial populations in soils contaminated with different concentrations of the herbicide at the early time after application. In general, however, the number of populations of the same soil sample treated with the same concentration of the quinclorac differed obviously with increasing incubation time within the early 8 weeks. The scale of differences in banding patterns-showed that the microbial community structures of the quinclorac-treated and non-quinclorac-treated soils were not significantly different after 21 weeks of incubation. Quantification, as demonstrated in this paper, was studied by establishing dose-response relationships. Significant pattern variations were quantified. Prominent DGGE bands were excised, cloned and sequenced to gain insight into the identities of predominant bacterial populations. The majority of DGGE band sequences were related to bacterial genera Clostridium, Sphingobacterium, Xanthomonas and Rhodococcus.  相似文献   
502.
A field study was conducted to determine the effects of glyphosate on microbial activity in the rhizosphere of glyphosate-resistant (GR) soybean and to evaluate interactions with foliar amendments. Glyphosate at 0.84 kg ae ha? 1 was applied GR soybean at the V4–V5 development stages. Check treatments included a conventional herbicide tank mix (2003 study only) and no herbicides (hand-weeded). Ten days after herbicide application, a commercially available biostimulant and a urea solution (21.0% N) were applied to soybean foliage at 33.5 mL ha? 1 and 9.2 kg ha? 1, respectively. Soil and plant samples were taken 0, 5, 10, 15, 20 and 25 days after herbicide application then assayed for enzyme and respiration activities. Soil respiration and enzyme activity increased with glyphosate and foliar amendment applications during the 2002 growing season; however, similar increases were not observed in 2003. Contrasting cumulative rainfall between 2002 and 2003 likely accounted for differences in soil microbial activities. Increases in soil microbial activity in 2002 suggest that adequate soil water and glyphosate application acted together to increase microbial activity. Our study suggests that general soil microbial properties including those involving C and N transformations are not sensitive enough to detect effects of glyphosate on rhizosphere microbial activity. Measurements of soil-plant-microbe relationships including specific microbial groups (i.e., root-associated Fusarium spp.) are likely better indicators of impacts of glyphosate on soil microbial ecology.  相似文献   
503.
Abstract

Land disposal of olive oil wastewater using it as a soil amendment requires a knowledge of the effects that its application may produce on the status of the mineral nutrients in the plant‐soil system. A pot experiment using calcareous soil was performed in a growth chamber to examine the effects of olive oil wastewater on the availability and postharvest soil extractability of K, Mg and Mn. The experiment included 6 treatments: two rates of olive oil wastewater, two mineral fertilizer treatments containing K (which supplied K in amounts equivalent to the K supplied by the olive oil wastewater treatments), a K‐free mineral fertilizer treatment, and a control. The pots were sown with ryegrass as the test plant, harvesting 3 times at intervals of one month. Olive oil wastewater has demonstrated a considerable capacity for supplying K that can be assimilated by the plant, tending in fact to surpass the mineral potassium fertilizer tested. The application of olive oil wastewater tends to reduce the concentration of Mg in the plant, similarly to the effect of adding mineral potassium fertilizer. An enhancement of Mn availability takes place in the soil amended with olive oil wastewater, which on occasion has produced Mn concentrations in plant that could be considered phytotoxic or at least excessive. After harvesting, we observed an increase in the amount of exchangeable K in soil with added industrial wastewater. However, these increases are lower than those in soil treated with mineral potassium fertilizer. The levels of exchangeable, carbonate‐bound, organic‐bound and residual Mg in soil were higher in treatments incorporating olive oil wastewater than in those with added mineral K, with the opposite tendency occurring in the amount of Fe‐Mn oxides‐bound Mg in soil. Treatments based on olive oil wastewater, especially in high doses, increased the amount of exchangeable and carbonate‐bound Mn in soil, in comparison with treatments adding mineral fertilizers with or without K. In contrast, the addition of industrial wastewater caused a drop in the amount of Fe‐Mn oxides‐bound and organic‐bound Mn in soil.  相似文献   
504.
The herbicide 2,4-D [2,4-(dichlorophenoxy) acetic acid] is one of the most widely used pesticides in the Canadian prairies and is frequently detected as a ground and surface water contaminant. The objective of this paper was to determine the magnitude and extent of variation of 2,4-D mineralization in a cultivated undulating prairie landscape. Microcosm incubation experiments, using a 4 × 3 × 2 factorial experimental design (soil moisture, 4 levels: 60, 85, 110, 135% of field capacity; slope position, 3 levels: upper-, mid- and lower-slopes; soil depth, 2 levels: 0–5 and 5–15 cm), were used to assess 2,4-D mineralization. The first-order mineralization rate constant (k1) varied from 0.03 to 0.22 day? 1, while total 2,4-D mineralization varied from 31 to 52%. At near-saturated conditions (110 and 135% of field capacity), the onset of 2,4-D degradation was delayed in soil obtained from the upper- and mid-slopes but not in soils obtained from the lower-slope position. The k1 and total 2,4-D mineralizationwas significantly influenced by all three factors and their interactions. The Freundlich sorption coefficient of 2,4-D ranged from 0.83 to 2.46 ug 1–1/ng? 1 mL1/n and was significantly influenced by variations in soil organic carbon content across slope positions. The infield variability of 2,4-D sorption and mineralization observed across slope positions in this undulating field was comparable in magnitude and extent to the regional variability of 2,4-D sorption and mineralization observed in surface soils across Manitoba. The large variability of 2,4-D mineralization and sorption at different slope positions in this cultivated undulating field suggests that landform segmentation models, which are used to delineate slope positions, are important considerations in pesticide fate studies.  相似文献   
505.
The objective of this study was to quantify 2,4-D (2,4-dichlorophenoxyacetic acid) mineralization in soil profiles characteristic of hummocky, calcareous-soil landscapes in western Canada. Twenty-five soil cores (8 cm inner diameter, 50 to 125 cm length) were collected along a 360 m transect running west to east in an agricultural field and then segmented by soil-landscape position (upper slopes, mid slopes, lower slopes and depressions) and soil horizon (A, B, and C horizons). In the A horizon, 2,4-D mineralization commenced instantaneously and the mineralization rate followed first-order kinetics. In both the B and C horizons, 2,4-D mineralization only commenced after a lag period of typically 5 to 7 days and the mineralization rate was biphasic. In the A horizon, 2,4-D mineralization parameters including the first-order mineralization rate constant (k 1), the growth-linked mineralization rate constant (k 2) and total 2,4-D mineralization at the end of the experiment at 56 days, were most strongly correlated to parameters describing 2,4-D sorption by soil, but were also adequately correlated to soil organic carbon content, soil pH, and carbonate content. In both B and C horizons, there was no significant correlation between 2,4-D mineralization and 2,4-D sorption parameters, and the correlation between soil properties and 2,4-D mineralization parameters was very poor. The k 1 significantly decreased in sequence of A horizon (0.113% day?1) > B horizon (0.024% day?1) = C horizon (0.026% day?1) and in each soil horizon was greater than k 2. Total 2,4-D mineralization at 56 days also significantly decreased in sequence of A horizon (42%) > B horizon (31%) = C horizon (27%). In the A horizon, slope position had little influence on k 1 or k 2, except that k 1 was significantly greater in upper slopes (0.170% day?1) than in lower slopes (0.080% day?1). Neither k 1 nor k 2 was significantly influenced by slope position in the B or C horizons. Total 2,4-D mineralization at 56 days was not influenced by slope positions in any horizon. Our results suggest that, when predicting 2,4-D transport at the field scale, pesticide fate models should consider the strong differences in 2,4-D mineralization between surface and subsurface horizons. This suggests that 2,4-D mineralization is best predicted using a model that has the ability to describe a range of non-linear mineralization curves. We also conclude that the horizontal variations in 2,4-D mineralization at the field scale will be difficult to consider in predictions of 2,4-D transport at the field scale because, within each horizon, 2,4-D mineralization was highly variable across the twenty-five soil cores, and this variability was poorly correlated to soil properties or soil-landscape position.  相似文献   
506.
The fate of 14C-labeled sulfadiazine (14C-SDZ) residues was studied in time-course experiments for 218 days of incubation using two soils (Ap horizon of loamy sand, orthic luvisol; Ap horizon of silt loam, cambisol) amended with fresh and aged (6 months) 14C-manure [40 g kg?1 of soil; 6.36 mg of sulfadiazine (SDZ) equivalents per kg of soil], which was derived from two shoats treated with 14C-SDZ. Mineralization of 14C-SDZ residues was below 2% after 218 days depending little on soil type. Portions of extractable 14C (ethanol-water, 9:1, v/v) decreased with time to 4–13% after 218 days of incubation with fresh and aged 14C-manure and both soils. Non-extractable residues were the main route of the fate of the 14C-SDZ residues (above 90% of total recovered 14C after 218 days). These residues were high immediately after amendment depending on soil type and aging of the 14C-manure, and were stable and not remobilized throughout 218 days of incubation. Bioavailable portions (extraction using CaCl2 solution) also decreased with increasing incubation period (5–7% after 218 days). Due to thin-layer chromatography (TLC), 500 μg of 14C-SDZ per kg soil were found in the ethanol-water extracts immediately after amendment with fresh 14C-manure, and about 50 μg kg?1 after 218 days. Bioavailable 14C-SDZ portions present in the CaCl2 extracts were about 350 μg kg?1 with amendment. Higher concentrations were initially detected with aged 14C-manure (ethanol-water extracts: 1,920 μg kg?1; CaCl2 extracts: 1,020 μg kg?1), probably due to release of 14C-SDZ from bound forms during storage. Consistent results were obtained by extraction of the 14C-manure-soil samples with ethyl acetate; portions of N-acetylated SDZ were additionally determined. All soluble 14C-SDZ residues contained in 14C-manure contributed to the formation of non-extractable residues; a tendency for persistence or accumulation was not observed. SDZ's non-extractable soil residues were associated with the soluble HCl, fulvic acids and humic acids fractions, and the insoluble humin fraction. The majority of the non-extractable residues appeared to be due to stable covalent binding to soil organic matter.  相似文献   
507.
A microcosm incubation study using an aquic brown soil from northeast China (a Cambisol in the UN Food and Agriculture Organization FAO Soil Taxonomy) was conducted to examine the effects of different concentrations (0, 50, 150, and 250 mg kg?1) of methamidophos (O,S-dimethyl phosphoramidothioato) on Pseudomonas, one of the most important gram-negative bacteria in soil. Amplified ribosomal DNA restriction analysis (ARDRA) was performed to study the Pseudomonas community structure, an in vitro assay was made to test the antagonistic activity of isolated Pseudomonas strains against soil-borne Rhizoctonia solani, a major member of the pathogens highly related to soil-borne plant diseases, and special primer amplification and sequencing were performed to investigate the diversity of phlD, an essential gene in the biosynthesis of 2, 4-diacetylphloroglucinol (2, 4-DAPG), which has biocontrol activity in phlD +isolates. With exposure to increasing methamidophos concentrations, the total number of soil Pseudomonas ARDRA patterns decreased significantly, but with less change in the same treatments over 1, 3, and 5 weeks of incubation. The number of isolated Pseudomonas strains with antagonistic activity against R. solani as well as the diversity and appearance frequency of the strains' phlD gene also decreased with increasing concentrations of methamidophos, especially at high methamidophos concentrations. Applying methamidophos could increase the risk of soil-borne plant diseases by decreasing the diversity of the soil Pseudomonas community and the amount of R. solani antagonists, particularly those with the phlD gene.  相似文献   
508.
A low-cost, high throughput bioanalytical screening method was developed for monitoring cis/trans-permethrin in dust and soil samples. The method consisted of a simple sample preparation procedure [sonication with dichloromethane followed by a solvent exchange into methanol:water (1:1)] with bioanalytical detection using a magnetic particle enzyme-linked immunosorbent assay (ELISA). Quantitative recoveries (83–126 %) of cis/trans-permethrin were obtained for spiked soil and dust samples. The percent difference of duplicate ELISA analyses was within ± 20 % for standards and ± 35 % for samples. Similar sample preparation procedures were used for the conventional gas chromatography/mass spectrometry (GC/MS) analysis except that additional cleanup steps were required. Recoveries of cis/trans-permethrin ranged from 81 to 108 % for spiked soil and dust samples by GC/MS. The ELISA-derived permethrin concentrations were highly correlated with the GC/MS-derived sum of cis/trans-permethrin concentrations with a correlation coefficient (r) of 0.986. The ELISA method provided a rapid qualitative screen for cis/trans-permethrin in soil and dust while providing a higher sample throughput with a lower cost as compared to the GC/MS method. The ELISA can be applied as a complementary, low-cost screening tool to prioritize and rank samples prior to instrumental analysis for exposure studies.  相似文献   
509.
The interaction among the bensulfuron-methyl, growth of Italian ryegrass, and soil chemical/biochemical/microbiological parameters was investigated in a microcosm experiment. The bensulfuron-methyl added to the soil can be rapidly degraded by certain fungi and actinomycetes present in the original paddy rice soil. The growth of Italian ryegrass significantly accelerated the in-soil degradation of bensulfuron-methyl in its rhizosphere. The uptake of bensulfuron-methyl by ryegrass increased with increasing dosage level of bensulfuron-methyl. However, the phytoextraction of bensulfuron-methyl by ryegrass contributed insignificantly to the total removal of the soil bensulfuron-methyl. Within the dosage range set in this study, the root development of ryegrass was not adversely affected by the presence of the soil bensulfuron-methyl although the fresh biomass of shoot was slightly reduced in the higher dosage treatments. This can be attributed to the adsorption of the added bensulfuron-methyl by soil colloids and consequently the reduction of bensulfuron-methyl level in the soil pore water to a concentration sufficiently lower than the toxic level. The growth of ryegrass significantly increased soil pH and the activities of phosphatase and peroxidase but reduced the EC and the activities of urease in the rhizospheric soil.  相似文献   
510.
Total mercury content has been determined in fruiting bodies of European Blushers and topsoils collected from 11 sites across Poland in 2006-2008. Mercury analysis was carried out using a validated analytical method and cold-vapour atomic absorption (CV-AAS). The European Blusher effectively accumulated mercury in fruiting bodies. The mean values of total mercury in caps of European Blushers from background (uncontaminated) areas were from 0.22 to 1.0 (0.067-3.2) and in stipes from 0.16 to 0.65 (0.071-2.7) μg/g dry weight. In topsoil beneath to fruiting bodies, the median Hg concentration at 10 sites in Northern Poland varied between 0.030 and 0.072 (0.0096–0.19) μg/g dw, and in one site in Southern Poland was 0.20 (0.079–0.34) μg/g dw. Data on Hg in European Blushers from different countries were reviewed. The mean concentrations of total Hg in caps of European Blushers from two “pristine” sites in northern part of Poland were ~1.0 μg/g dw. A meal made with 300–500 g of fresh caps of European Blushers collected at such sites (assuming 90% water content in caps) can result in Hg intake of 0.0003–0.0005 mg Hg/kg bm (assuming a 60 kg bm), which is a dose equipotent to a new provisional tolerable weekly intake (PTWI) value set for inorganic Hg.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号