首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   659篇
  免费   86篇
  国内免费   343篇
安全科学   63篇
废物处理   10篇
环保管理   87篇
综合类   659篇
基础理论   79篇
污染及防治   52篇
评价与监测   106篇
社会与环境   25篇
灾害及防治   7篇
  2024年   7篇
  2023年   20篇
  2022年   31篇
  2021年   51篇
  2020年   46篇
  2019年   42篇
  2018年   39篇
  2017年   44篇
  2016年   57篇
  2015年   77篇
  2014年   50篇
  2013年   74篇
  2012年   66篇
  2011年   66篇
  2010年   49篇
  2009年   39篇
  2008年   36篇
  2007年   43篇
  2006年   48篇
  2005年   31篇
  2004年   15篇
  2003年   28篇
  2002年   12篇
  2001年   18篇
  2000年   16篇
  1999年   15篇
  1998年   8篇
  1997年   8篇
  1996年   9篇
  1995年   4篇
  1994年   6篇
  1993年   4篇
  1992年   4篇
  1991年   6篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1088条查询结果,搜索用时 15 毫秒
201.
Intergovernmental Panel on Climate Change (IPCC) Tier 1 key sources level 1 assessment was applied to the 1994–1994 National Greenhouse Gases (GHG) emission inventory for Mexico in order to identify and analyze the key sources within it. Top key sources were from land use change and energy combustion contributing to about 60% of total national emissions. In addition, a Tier 1 trend assessment revealed some changes with respect to Tier 1 level assessment: Top key sources according to this analysis are waste disposal and delayed emissions from land clearing. Important insight for cost effective preventive mitigation actions can be extracted from this analysis. A comparison with other countries was carried out to find similarities in the GHG national emissions inventories related to common features on economic development.  相似文献   
202.
结合黄河中上游能源化工区重点产业发展战略生态风险宏观性、综合性、复杂性的特点,论文以生态风险景观评价方法及3S技术等为研究手段,综合考虑重点产业发展战略人为风险源及自然风险源,以生态风险受体和终点选择、风险源分析、暴露危害分析、生态风险综合评价及生态风险分区为评价步骤,揭示了重点产业发展战略潜在生态风险空间分异特征。研究结果表明:黄河中上游重点产业战略实施区可划分为三类生态风险监控区,生态风险重点监控区自然风险源分布集中,重点产业人为风险源和自然风险源交织在一起,极易发生生态风险放大效应,生态风险次重点监控区自然生态风险源分布较单一,局部重点产业人为风险源强度增强,将增加区域生态风险水平,生态风险监控区自然生态风险源分布范围较小,潜在生态风险水平相对较低。论文探索了战略环评生态风险评价方法和评价思路,为国内重点产业发展战略生态风险评价提供了借鉴。  相似文献   
203.
将四川省农村地区分成平原和浅丘区、小起伏山地和高丘区、高山峡谷区三种类型区域。利用GIS软件,将四川省划分网格,分别统计每个网格中的工业废气污染点源数量和主要交通线路长度,得出四川省工业废气污染点源密度分级图和四川省主要公路密度分布图,以及结合农村污染面源的情况分析,总结出农村区域的主要污染密度分布类型。结果表明,在一定区域范围内,农村平原和浅丘区的工业源、交通源、农村面源分布均匀;高丘区、小起伏山区、高山峡谷区的污染源分布均具有明显的地理分布特性,山间平地和山谷台地的污染源分布密度高;根据四川省污染源分布规律给农村空气自动监测布点提供了指导。  相似文献   
204.
吴文俊  蒋洪强 《生态环境》2011,20(12):1950-1956
在我国的非常规性污染物质中,大气重金属砷、铅已越来越多地被关注和重视。文章综述了国内外人为源对大气中重金属排放的贡献,结果显示中国是全球人为活动向大气排放重金属最多的国家之一,燃煤和有色金属冶炼行业在相当长的时间内都将是最主要且最为重要的人为排放源。通过系统调研燃煤及有色金属冶炼业资源及产业布局状况,构建目前我国大气重金属相关清单模型,进行了我国重点源大气砷、铅排放清单分析,结果表明:(1)2000-2008年我国燃煤大气砷、铅排放量共为93733t,年均增长率为7.93%,2004-2008年有色金属冶炼业大气砷、铅排放量共为18836t,年均增长率为15.2%;(2)2000-2008年各经济部门中电力部门燃煤大气砷、铅放量始终最高,占燃煤大气排放总量的44.6%-57.1%,且呈逐年升高的趋势;(3)2000-2008年各省区中山西、河北、河南和湖南省是大气砷、铅的排放大户。其中,燃煤大气砷、铅排放量主要集中在人口密集、工业集中、经济发展速度较快的北部和中东部省区,包括山西、山东、河北、河南和江苏五省,占全国燃煤排放总量的39.1%,有色金属冶炼大气砷、铅排放量主要集中在我国有色金属工业较为发达的河南及湖南省,占全国有色金属冶炼业排放总量的47.3%。可以看出,我国需要高度重视大气重金属砷、铅的污染防治,加强排放控制基础能力建设,加快建立适合中国的大气砷、铅污染防治技术政策体系。  相似文献   
205.
青岛市港口船舶大气污染排放清单的建立及应用   总被引:11,自引:3,他引:8  
2002~2006年青岛市环保局与瑞典国际开发合作署合作开发了青岛市空气环境质量管理系统,建立青岛市海上交通源大气污染排放清单是其中的一项子专题,范围涉及青岛沿岸分布的港口,重点考虑船舶停泊港口及航线过程的大气污染物排放,划分了20条航线。建立的青岛市海上交通源大气污染排放清单在开发的基于GIS地理信息系统EnviMan复合源大气扩散模型中得到较好应用,实现了对沿海主要大气污染物排放量的空间模拟测算,解析出大气污染排放清单建立年度青岛市港口、航运排放的大气污染物对市区环境空气中的SO2、NOX浓度贡献分别约占8.0%、12.9%。  相似文献   
206.
太原市秋冬季大气污染特征和输送路径及潜在源区分析   总被引:5,自引:4,他引:1  
闫世明  王雁  郭伟  李莹  张逢生 《环境科学》2019,40(11):4801-4809
采用环境空气质量指数(AQI)统计分析了2014~2018年太原市全年及秋冬季污染特征,并采用HYSPLIT后向轨迹模型计算了2014~2017年秋冬季逐时后向轨迹,结合太原市AQI,通过聚类分析、潜在源贡献因子和浓度权重轨迹方法对影响太原市的污染物输送路径和潜在源区进行了分析.结果表明,太原市污染状况不容乐观,太原市2014~2018年全年优良天数波动较大,尤其近两年从64%下降到不足50%;然而秋冬季优良天数稳步上升,2018年超过50%,空气质量有好转趋势.污染类型可能发生变化,全年及秋冬季PM_(2.5)为首要污染物的污染天数下降显著,PM_(10)为首要污染物的天数上升明显.聚类分析2014~2017年秋冬季太原的后向轨迹,53%的气团来自偏西方向,21%来自西北方向,12%来自西南方向,14%来自偏东方向,其中西南方向轨迹是外来污染物输送进入太原的主要轨迹,对太原空气质量有显著影响.PSCF和CWT分析表明,影响太原空气质量的重要潜在源区主要位于汾渭平原的陕西汉中、西安和山西的吕梁、临汾等地.建立汾渭平原及其周边区域联防联控机制对控制区域污染有着重要意义.  相似文献   
207.
基于长江源区冬克玛底流域2017年6~9月采集的84个地下水样品,分析了地下水稳定同位素特征及其影响因素,讨论了地下水的补给来源.结果表明,研究区多年冻土区地下水δ~(18)O的变化范围为-15. 3‰~-12. 5‰,平均值为-14. 0‰;δD的变化范围为-108. 9‰~-91. 7‰,平均值为-100. 2‰,与当地大气降水相比,地下水较为富集重同位素;地下水线(LG)的斜率和截距均低于全球和局地大气降水线(GMWL和LMWL),表明地下水在接受降水的补给后经历了不同程度的蒸发作用;地下水氘盈余(d-excess)变化范围为4. 9‰~25. 0‰,平均值为11. 6‰,低于大气降水平均氘盈余值;地下水同位素与降水量存在显著的负相关关系,表明大气降水对地下水具有重要的补给作用;不同时期影响地下水同位素的组成和变化因素有所不同,在冻土的冻融前期(气温上升阶段),由于冻土活动层较薄,地下水受气温影响显著.虽然后期气温降低,但冻土活动层厚度依然在增加,此时地下水在土壤中滞留的时间的增加是地下水同位素富集的一个重要因素.结合流域的地形特点、地下水同位素特征及其影响因素,推断降水是地下水的主要补给来源.研究结果能够为长江源多年冻土区的水循环过程提供科学依据.  相似文献   
208.
利用机器学习模型控制气象因素影响,定量分析了疫情期间污染源减排对咸阳空气质量的影响.结果表明,与未发生疫情情景相比,疫情期间咸阳PM2.5、PM10、SO2、NO2和CO浓度分别下降19.3%、26.0%、13.4%、60.1%和9.1%,NO2降幅最大,SO2和CO降幅较小,O3浓度不降反而上升50.9%.在一次排放和二次生成前体物都下降的情况下,PM2.5降幅低于预期,O3浓度不降反升,反映出PM2.5和O3治理的复杂性,暗示了剩余污染源对咸阳空气质量影响较大,而停产限产政策(与疫情影响类似)对咸阳空气质量改善有限,未来应重点关注散煤和生物质燃烧、热力生产和供应、原油加工及石油制品制造等剩余污染源的治理.  相似文献   
209.
汾渭平原吸收性气溶胶时空演化及潜在源区分析   总被引:1,自引:1,他引:0  
在绿色发展理念的带动下,全国多地的空气质量逐渐改善,但汾渭平原大气污染程度逐年走高,颗粒物污染尤为严重.利用OMI/Aura OMAERUV L2气溶胶数据集和PM2.5站点数据,采用空间自相关分析及后向轨迹模型等方法,探索2005~2019年汾渭平原吸收性气溶胶的时空演化过程,揭示其高值极主导类型以及污染物传输路径和潜在源区.结果表明:①2005~2019年汾渭平原吸收性气溶胶指数(absorbing aerosol index,AAI)年均值波动上升,2006、2013和2017年为汾渭平原AAI高值转折点,年均值均大于0.63;西安和临汾AAI空间稳定性较差为高高聚集极点,在15年间高高聚集区域面积增长15.3%,空间分布更加集中,形成由西安和临汾两极相连的条带状分布区域,占区域总面积的24.2%;低低聚集区域面积锐减6.2%,转变为无特征区域.②汾渭平原AAI冬季数值最高、覆盖区域最广,在临汾极和西安极突破0.8,研究区AAI大于0.6的区域占比91.5%,其次为春季(AAI>0.4)、秋季(AAI>0.3),夏季全境低值.汾渭平原AAI高值受大气扩散条件、气温和降水量变化影响显著.③利用后向轨迹和潜在源贡献模型得出西安极和临汾极污染物的远距离输送气团来自西北方向,近距离输送气团来自偏东和偏南方向,结合源区下垫面类型确定两个远距离沙尘传输源区(西北风源、北风源)、两个碳质源区(东风源和南风源)和一个沙尘和碳质共同作用源区(黄土高原源).其中西北风源、黄土高原源和南风源对西安极影响显著,东风源和黄土高原源对临汾极影响显著,临汾极虽受一定程度西北风源和北风源沙尘影响,但影响较小,结合CO空间分布和其与AAI相关性系数的空间分布得出,临汾极吸收性气溶胶为碳质主导,西安极为沙尘和碳质共同作用.  相似文献   
210.
依据1998—2006年18个航次13个站的调查资料,简要描述和分析了大鹏湾表层沉积物中包括碳、氮、磷的多项生物地球化学要素多年的平均空间分布和年际变化,并依据TOC/TN原子比探讨沉积物中有机质的来源.结果表明,大鹏湾的水动力条件对沉积物中各生物地球化学要素的分布变化影响不大,TOC、TN和TP含量分别为(17600±4600) mg·kg-1、(1738±446) mg·kg-1和(562±89) mg·kg-1,比珠江口和大亚湾高.9年调查期间,TOC、TC、TN和TP含量的年际变化趋势都是上升的,表明随着周边地区经济的迅速发展和人口的不断增加,产生的大量有机质通过小河流和地表径流排放入海,使大鹏湾中沉积物的环境逐渐恶化.TOC/TN原子比为12.4±2.5,介于海洋浮游生物源和陆生高等植物源之间,反映了大鹏湾表层沉积物中有机质是陆源和水生2种来源的混合输入.TOC/TN原子比呈逐年上升趋势,表明大鹏湾接受陆源有机质与水生有机质的比例逐渐增加.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号