首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   19篇
  国内免费   33篇
安全科学   11篇
废物处理   32篇
环保管理   16篇
综合类   88篇
基础理论   18篇
污染及防治   25篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   13篇
  2016年   8篇
  2015年   11篇
  2014年   16篇
  2013年   10篇
  2012年   13篇
  2011年   8篇
  2010年   5篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2006年   13篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1993年   1篇
  1989年   1篇
排序方式: 共有190条查询结果,搜索用时 15 毫秒
41.
在实验室条件下,对国产50个品牌80种废干电池中镍的分布及含量进行了研究。结果表明,95%的废干电池含有金属镍,其中碱性废干电池的镍主要分布在外皮(壳)和外底片,碳性废干电池主要分布在金属帽中,钮扣式废干电池分布在正极壳和负极盖。废干电池中镍的质量分数在1%~8.4%之间,平均质量分数为2.4%。废干电池的碳粉中不含镍。  相似文献   
42.
锂离子电池过充爆炸强度试验研究   总被引:1,自引:0,他引:1  
过充是导致电池爆炸的一种常见原因,分析过充与电池爆炸的关系及过充所导致的电池爆炸对周围环境的破坏程度极其重要.以10 Ah三元材料锂离子电池为研究对象,采用不同倍率过充方式刺激锂离子电池,利用高速摄影仪、红外热像仪和压力传感器来记录该锂离子电池爆炸、燃烧的图像、温度和压力.结果表明:电池在过充的过程中,其温度变化分为3个阶段;发生爆炸后,电池的能量主要以燃烧的形式释放,燃烧的火球面积高达770.64 cm2;距电池爆炸15 cm处,最大压强为0.03 MPa,可见电池爆炸会对周围环境造成一定破坏.  相似文献   
43.
废旧Zn-C电池-活性污泥炭的制备及对SO_2的吸附   总被引:1,自引:1,他引:0  
以污水厂二次污泥为主要原料,掺杂不同量的废旧Zn-C电池电极材料,采用Zn Cl2活化法制备出废旧Zn-C电池-活性污泥炭,表征分析污泥炭样品的碘吸附值、BET、FT-IR、SEM-EDS和XRD,并进行了低浓度SO2气体动态吸附试验.试验结果表明,污泥与电池粉末质量比为3∶1时,污泥炭的碘吸附值和比表面积分别达到750.6 mg·g-1和708.5 m2·g-1,优于纯污泥炭;回归分析表明,污泥炭吸附低浓度SO2的速率可用班厄姆公式描述,吸附平衡表达式可用Freundlih方程、Langmuir等温方程式表达,而Freundlih方程拟和效果更好.  相似文献   
44.
废催化剂中金属的回收   总被引:7,自引:0,他引:7  
孟宪红  李悦 《化工环保》1996,16(4):199-202
简述了含有铂、钒、镍金属组分的废催化剂来源及金属回收工艺,介绍了萃取法在金属回收中的应用。  相似文献   
45.
从废催化剂中回收钼的新工艺   总被引:4,自引:2,他引:2  
朱振中  商少明 《化工环保》1998,18(6):356-358
确定了用新型复合浸取剂从废催化剂中回收钼的最佳工艺条件废催化剂颗粒度100目焙烧温度750℃,焙烧时间1h复合浸取剂中助浸剂质量为5%,浸取固液质量比1:3,浸取温度60℃,浸取时间6h,在该条件下,钼的浸取率达到92.7%~95.5%。  相似文献   
46.
陈炎  程洁红 《化工环保》2017,37(6):688-692
废锂电池中含有的Co、Ni和Cu等金属具有回收价值,Fe的存在降低了有价金属的回收效率。为去除废锂电池硫酸浸出液中的Fe,采用黄钠铁矾法分别以氯酸钠和过氧化氢作为氧化剂氧化除Fe,并优化了过氧化氢作为氧化剂的除Fe工艺参数。实验结果表明:过氧化氢作为氧化剂的除Fe效果好于氯酸钠;在n(H2O2)∶n(Fe)=0.5、初始溶液pH为1.8、终点pH为2.5、反应时间为2.0 h、搅拌速率为500 r/min的最佳工艺条件下,初始ρ(Fe)为0.212g/L的硫酸浸出液经除Fe处理后ρ(Fe)小于0.004 g/L,Fe去除率达98.0%,Co、Ni和Cu的损失率分别为1.04%、2.17%和1.41%。  相似文献   
47.
研究利用废旧锌锰电池的阳极材料净化模拟废水中的磷,探讨了净化过程中pH、吸附剂用量、反应时间和磷初始浓度等操作条件对磷净化效果的影响,找出了适宜的操作条件并对净化过程的机理进行了分析。通过试验发现pH对磷净化过程有显著影响,含磷废水净化过程中适宜的pH为8.0;随着吸附剂加入量的增加和初始溶液的降低,磷的净化率逐渐增加。锌锰电池正极材料对水中磷的净化过程速度较快,5 min即可使磷的吸附率达到93.41%。对平衡吸附容量数据进行回归分析发现磷净化过程的吸附等温线可以用Langmuir方程和Freundlich方程表示,Langmuir方程参数Q0为12.41 mg/g,Freundlich方程参数n为2.927,用不同的动力学模型对试验数据进行回归分析发现吸附剂对水中磷的吸附过程符合假二级模型。锌锰电池正极材料可以有效净化废水中的磷。  相似文献   
48.
As a proactive step towards understanding future waste management challenges, this paper presents a future oriented material flow analysis (MFA) used to estimate the volume of lithium-ion battery (LIB) wastes to be potentially generated in the United States due to electric vehicle (EV) deployment in the near and long term future. Because future adoption of LIB and EV technology is uncertain, a set of scenarios was developed to bound the parameters most influential to the MFA model and to forecast “low,” “baseline,” and “high” projections of future end-of-life battery outflows from years 2015 to 2040. These models were implemented using technology forecasts, technical literature, and bench-scale data characterizing battery material composition. Considering the range from the most conservative to most extreme estimates, a cumulative outflow between 0.33 million metric tons and 4 million metric tons of lithium-ion cells could be generated between 2015 and 2040. Of this waste stream, only 42% of the expected materials (by weight) is currently recycled in the U.S., including metals such as aluminum, cobalt, copper, nickel, and steel. Another 10% of the projected EV battery waste stream (by weight) includes two high value materials that are currently not recycled at a significant rate: lithium and manganese. The remaining fraction of this waste stream will include materials with low recycling potential, for which safe disposal routes must be identified. Results also indicate that because of the potential “lifespan mismatch” between battery packs and the vehicles in which they are used, batteries with high reuse potential may also be entering the waste stream. As such, a robust end-of-life battery management system must include an increase in reuse avenues, expanded recycling capacity, and ultimate disposal routes that minimize risk to human and environmental health.  相似文献   
49.
While lithium-ion battery (LIB) technology has improved substantially to achieve better performance in a wide variety of applications, this technological progress has led to a diverse mix of batteries in use that ultimately require waste management. Development of a robust end-of-life battery infrastructure requires a better understanding of how to maximize the economic opportunity of battery recycling while mitigating the uncertainties associated with a highly variable waste stream. This paper develops and applies an optimization model to analyze the profitability of recycling facilities given current estimates of LIB technologies, commodity market prices of materials expected to be recovered, and material composition for three common battery types (differentiated on the basis of cathode chemistry). Sensitivity analysis shows that the profitability is highly dependent on the expected mix of cathode chemistries in the waste stream and the resultant variability in material mass and value. The potential values of waste streams comprised of different cathode chemistry types show a variability ranging from $860 per ton1 for LiMn2O4 cathode batteries to $8900 per ton for LiCoO2 cathode batteries. In addition, these initial results and a policy case study can also help to promote end-of-life management and relative policymaking for spent LIBs.  相似文献   
50.
锂电池以其优异的性能得到了广泛的应用,其废弃量也在逐步增加.如果不对其进行有效的处理回收,不仅给环境保护带来巨大的压力,而且也会造成钴、锂、镍和锰等有价金属的极大浪费.综述了国内外对废旧锂电池回收技术的研究现状,比较了不同回收途径的优缺点,讨论了回收技术的发展方向,着重介绍了共沉淀法在废旧锂电池有价金属回收中的应用.此外,随着锂离子电池生产技术的发展,新的电极材料将会出现并取代过渡金属氧化物,同时也需要相应的电解液与之匹配,这将向废旧锂电池回收技术提出了新的要求.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号