首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   19篇
  国内免费   33篇
安全科学   11篇
废物处理   32篇
环保管理   16篇
综合类   88篇
基础理论   18篇
污染及防治   25篇
  2024年   1篇
  2023年   1篇
  2022年   4篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   13篇
  2016年   8篇
  2015年   11篇
  2014年   16篇
  2013年   10篇
  2012年   13篇
  2011年   8篇
  2010年   5篇
  2009年   6篇
  2008年   7篇
  2007年   9篇
  2006年   13篇
  2005年   10篇
  2004年   7篇
  2003年   5篇
  2002年   6篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1993年   1篇
  1989年   1篇
排序方式: 共有190条查询结果,搜索用时 31 毫秒
51.
2009年2月,国务院发布《废弃电器电子产品回收处理管理条例》,成为我国废弃电器电子产品回收处理的纲领性文件。在《废弃电器电子产品处理目录(第一批)》中,明确将电视机、电冰箱、洗衣机、房间空调器、微型计算机等5种产品纳入第一批目录。同时,为了为了能够及时、客观地与经济发展、技术进步以及电器电子产品行业的发展变化等相适应,《目录》管理委员会起草了《制订和调整废弃电器电子产品处理目录的若干规定》,明确随着经济发展变化及电子产品废弃形势调整电器电子产品处理目录的原则。废弃电池在近几年来在我国增长速度很大,将来的管理形势十分紧迫。本文在此分析我国几种废弃电池(铅酸电池、镍氢电池及锂电池)的产生量、再生处理处置情况及管理政策导向。并在目录一批筛选原则的基础上利用权重分析法,筛选评估废弃电池能否进入废弃电器电子产品处理目录(第二批)管理的可能,研究显示铅酸电池已具备进入管理目录的资质。  相似文献   
52.
膜电解法从模拟酸性蚀刻废液中回收铜粉   总被引:1,自引:0,他引:1  
酸性蚀刻废液是一种印制电路板制作过程中产生的强酸、高铜的工业废水,对其回收利用具有较高的经济价值。采用膜电解法处理模拟酸性蚀刻废液,在阴极区回收铜粉。研究了铜粉的形成条件,考察了阴极液铜浓度、温度和电流密度对阴极电流效率的影响。结果表明,阴极液的铜浓度在20~25 g/L,温度为45~50℃,电流密度在11~12 A/dm2,阴极的电流效率最高。随着阴极液酸度的增加,铜粉的纯度提高,但阴极电效会降低。为保证较高的铜粉纯度及阴极电效,阴极液的酸度在0.32~0.36 mol/L为宜。  相似文献   
53.
废铅酸蓄电池铅膏性质分析   总被引:1,自引:0,他引:1  
为给废旧铅蓄电池铅膏的湿法回收工艺提供理论依据,对湖北金洋冶金股份有限公司破碎分选后的废铅膏进行了XRF、XRD、物理分析及化学分析等,确定了废铅膏的主要成分、理化性质等特性。结果表明,废铅膏粒径细小,碾钵磨细后能过120目的筛下物超过77.4%,这对湿法转化是有利的。废铅膏主要组成为64.5%PbSO4、29.5%PbO2、4.5%PbO、0.8%Pb及其他微量杂质元素,杂质主要包括Fe、Sb和Si等。因此,铅膏湿法处理时应该采取合适的净化工艺。  相似文献   
54.
硫酸铅可以在柠檬酸钠-乙酸体系中脱硫转化生成柠檬酸铅。考察了柠檬酸钠投加量、反应时间、固液比以及反应温度对PbSO4浸出转化的影响。实验结果表明,PbSO4的转化率随着柠檬酸钠投加量和反应时间的增加而增大,固液比和反应温度对浸出过程影响不大。溶液中溶解的铅含量随着柠檬酸钠投加量的增大而增大,其他条件对其影响不明显。最佳浸出工艺条件是:柠檬酸钠与PbSO。的物质的量之比为2:1,固液比为1/5~1/3,反应温度为25℃,反应时间为2h,此时PbSO4的转化率可达到99%左右,溶液中的铅含量为总铅的3.8%左右。PbSO4浸出得到[Pb,(C。H,O,),]·3H2O,它在350℃左右可完全分解,得到PbO/Pb粉末。  相似文献   
55.
硫酸铅可以在柠檬酸钠-乙酸体系中脱硫转化生成柠檬酸铅.考察了柠檬酸钠投加量、反应时间、固液比以及反应温度对PbSO4浸出转化的影响.实验结果表明,PbSO4的转化率随着柠檬酸钠投加量和反应时间的增加而增大,固液比和反应温度对浸出过程影响不大.溶液中溶解的铅含量随着柠檬酸钠投加量的增大而增大,其他条件对其影响不明显.最佳浸出工艺条件是:柠檬酸钠与PbSO4的物质的量之比为2:1,固液比为1/5~ 1/3,反应温度为25℃,反应时间为2h,此时PbSO4的转化率可达到99%左右,溶液中的铅含量为总铅的3.8%左右.PbSO4浸出得到[Pb3(C6H5O7)2]·3H2O,它在350℃左右可完全分解,得到PbO/Pb粉末.  相似文献   
56.
失效动力锂离子电池再利用和有用金属回收技术研究   总被引:1,自引:0,他引:1  
动力锂离子电池以其贮电能力大、充放电速度快等优点被广泛应用在电动汽车上,近年来失效电动汽车动力锂离子电池报废量不断增加,但未得到有效处理回收,造成了巨大的资源浪费和环境污染.失效电池还有80%左右的容量可以使用,可以在场地车或者储能电站进行再利用,以达到材料和电池的最大利用率;同时电池中含有多种有用金属(如Co,Al,Ni,Li等)且相对含量较高,极具回收价值.针对失效动力锂离子电池的再利用和有用金属的各种回收方法进行了评述.  相似文献   
57.
废弃锂离子电池中金属的回收及钴酸锂的湿法合成   总被引:1,自引:0,他引:1  
采用湿法回收并合成锂离子电池中钴酸锂。考察了不同的有机溶剂溶解粘结剂PVDF、不同酸浸条件对钴酸锂浸出效果的影响、碳酸钴和碳酸锂共沉淀物的焙烧条件,并对所获得的钴酸锂进行结构分析。结果表明,N-甲基吡咯烷酮(NMP)作为溶解PVDF的溶剂效果最佳;当硫酸浓度6%、固液比1:30、30%的H2O:1.4mL/g、温度80℃、反应120min时为硫酸浸出最佳条件,此时钴的浸出率为92.3%,锂的浸出率为92.0%;合成LiCoO2时的焙烧温度在750℃较为合适。SEM分析表明,颗粒粒度小,分散性好。  相似文献   
58.
为分离回收废锂电池中的铝,在含铁及含铁锰的两种碱浸液中构建了金属(Me)-OH--CO32-,Me-OH--NH3,Me-OH--NH3-CO32-三种配合-沉淀体系,分析了三种体系在不同pH条件下的铝去除率和Al(OH)3沉淀中的铁及铁锰含量。实验结果表明:含铁碱浸液在pH为8.0~10.0的适宜条件下,Me-OH--CO32-、Me-OH--NH3和Me-OH--NH3-CO32-体系的铝去除率分别高达99.4%、99.7%和99.6%,Al(OH)3沉淀中含少量铁,Me-OH--NH3-CO32-体系生成的Al(OH)3沉淀比Me-OH--NH3 体系的Al(OH)3沉淀更易分离;含铁锰碱浸液Me-OH--CO32-、Me-OH--NH3和Me-OH--NH3-CO32-体系的铝去除率分别高达99.4%,99.7%和99.9%,Al(OH)3沉淀中几乎不含锰,含有少量铁。  相似文献   
59.
研究利用废旧锌锰电池的阳极材料净化模拟废水中的磷,探讨了净化过程中pH、吸附剂用量、反应时间和磷初始浓度等操作条件对磷净化效果的影响,找出了适宜的操作条件并对净化过程的机理进行了分析。通过试验发现pH对磷净化过程有显著影响,含磷废水净化过程中适宜的pH为8.0;随着吸附剂加入量的增加和初始溶液的降低,磷的净化率逐渐增加。锌锰电池正极材料对水中磷的净化过程速度较快,5 min即可使磷的吸附率达到93.41%。对平衡吸附容量数据进行回归分析发现磷净化过程的吸附等温线可以用Langmuir方程和Freundlich方程表示,Langmuir方程参数Q0为12.41 mg/g,Freundlich方程参数n为2.927,用不同的动力学模型对试验数据进行回归分析发现吸附剂对水中磷的吸附过程符合假二级模型。锌锰电池正极材料可以有效净化废水中的磷。  相似文献   
60.
As a proactive step towards understanding future waste management challenges, this paper presents a future oriented material flow analysis (MFA) used to estimate the volume of lithium-ion battery (LIB) wastes to be potentially generated in the United States due to electric vehicle (EV) deployment in the near and long term future. Because future adoption of LIB and EV technology is uncertain, a set of scenarios was developed to bound the parameters most influential to the MFA model and to forecast “low,” “baseline,” and “high” projections of future end-of-life battery outflows from years 2015 to 2040. These models were implemented using technology forecasts, technical literature, and bench-scale data characterizing battery material composition. Considering the range from the most conservative to most extreme estimates, a cumulative outflow between 0.33 million metric tons and 4 million metric tons of lithium-ion cells could be generated between 2015 and 2040. Of this waste stream, only 42% of the expected materials (by weight) is currently recycled in the U.S., including metals such as aluminum, cobalt, copper, nickel, and steel. Another 10% of the projected EV battery waste stream (by weight) includes two high value materials that are currently not recycled at a significant rate: lithium and manganese. The remaining fraction of this waste stream will include materials with low recycling potential, for which safe disposal routes must be identified. Results also indicate that because of the potential “lifespan mismatch” between battery packs and the vehicles in which they are used, batteries with high reuse potential may also be entering the waste stream. As such, a robust end-of-life battery management system must include an increase in reuse avenues, expanded recycling capacity, and ultimate disposal routes that minimize risk to human and environmental health.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号