首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   860篇
  免费   156篇
  国内免费   737篇
安全科学   91篇
废物处理   105篇
环保管理   69篇
综合类   1116篇
基础理论   106篇
污染及防治   238篇
评价与监测   11篇
社会与环境   3篇
灾害及防治   14篇
  2024年   7篇
  2023年   16篇
  2022年   49篇
  2021年   46篇
  2020年   56篇
  2019年   76篇
  2018年   64篇
  2017年   60篇
  2016年   82篇
  2015年   98篇
  2014年   96篇
  2013年   94篇
  2012年   124篇
  2011年   107篇
  2010年   80篇
  2009年   81篇
  2008年   58篇
  2007年   98篇
  2006年   119篇
  2005年   78篇
  2004年   71篇
  2003年   55篇
  2002年   33篇
  2001年   24篇
  2000年   12篇
  1999年   10篇
  1998年   8篇
  1997年   11篇
  1996年   5篇
  1995年   9篇
  1994年   8篇
  1993年   6篇
  1992年   4篇
  1991年   1篇
  1990年   1篇
  1988年   1篇
  1984年   1篇
  1980年   1篇
  1974年   1篇
  1973年   2篇
排序方式: 共有1753条查询结果,搜索用时 31 毫秒
371.
杨宏  徐富  孟琛  苏姗  袁星 《环境科学》2018,39(10):4661-4669
为了快速提高以污水厂反硝化池污泥为菌源的反硝化包埋填料的活性,实现包埋固定化的工程化应用,探究包埋填料的微生物群落特性,采用批次实验研究不同碳氮比、温度、pH对包埋填料活性的影响,并采用高通量测序研究包埋填料的生物群落特性.结果表明,C/N为10、温度为30℃、pH为7.5±0.3时,经过7 d即可恢复5.37 mg·(g·h)~(-1)的初始活性.在C/N为10,温度为25℃,pH为8.0的最优培养条件下,15 d后比反硝化速率即增大15倍至80.17 mg·(g·h)~(-1)并实现稳定运行.SEM结果显示包埋填料内部存在大量利于传质的通道,内部的细菌呈团簇状生长良好.高通量测序表明,包埋填料中具有反硝化功能的Thauera和Thermomonas为优势菌属,所占比例分别为24.27%和8.23%,保证了反硝化填料脱氮的高效性.Thauera优势菌属和Thermomonas菌属在最优培养条件下快速增殖是填料活性快速提高的主要原因.  相似文献   
372.
为了实现污水处理的深度脱氮除磷及蛋白质源污泥增量,分别采用生物吸附/A~2O和生物吸附/MBR/硫铁自养反硝化工艺进行对比试验研究.结果表明,生物吸附工艺可以快速富集进水中的大部分有机物,剩余污泥采用厌氧发酵方式处理,用于生产优质碳源.两套污水处理工艺均获得了优质水质,出水氨氮、总氮和总磷分别达到5、7和0.4 mg·L~(-1)以下.优质碳源投加到A~2O和MBR工艺段,碳源环境的改善使得污泥增长率和氮的同化比例显著提高,第4阶段污泥产率分别达到0.59和0.49 g·g~(-1)(以每g COD产VSS量(g)计),氮的同化率分别达到66%和59%.此外,污泥中蛋白质及氨基酸含量也显著增长,A~2O工艺段增长率分别为34.7%和31.2%,MBR工艺段相应的增长率分别为19.7%和18.3%,实现了蛋白质源污泥的增量,为污泥资源化利用提供了优质原料.  相似文献   
373.
目的研究流动海水环境中人工破损有机涂层的劣化过程。方法使用电化学阻抗谱(EIS)技术对比研究流动海水与静止海水环境中破损涂层的劣化行为,跟踪观察涂层宏观形貌演变。结果根据EIS响应特征,发现流动海水中的人工破损有机涂层劣化更快,且在浸泡后期流动海水中破损涂层没有形成扩散阻抗。根据涂层宏观形貌发展,发现静止海水中涂层仅围绕破损处出现了面积较小的锈点和鼓泡,而流动海水中涂层因劣化而产生的锈点和鼓泡面积更大且大量分布在整个涂层表面。结论当人工破损有机涂层在流动海水和静止海水环境的浸泡过程中,涂层劣化首先从人工破损处开始。破损处成为局部腐蚀反应主要的阳极区,破损处周围的区域和涂层内在缺陷处成为扩展腐蚀反应的阴极区。流动海水中涂层的腐蚀产物累积与脱落更加频繁,导致涂层劣化速度加快和基体金属腐蚀加剧。  相似文献   
374.
典型燃煤电厂废SCR催化剂解析及环境管理思考   总被引:1,自引:0,他引:1  
目的提出废烟气脱硝催化剂成分解析、产生量预测及处理处置的对策。方法用ICP方法对烟气选择性催化还原脱硝过程中产生的大量废SCR催化剂化学成分等进行分析。采用数学模型对废SCR产生量进行估算,并在此基础上给出将废SCR催化剂列入危废名单的原因。结果在燃煤电厂装机容量的基础上进行理论推算,我国将从2017年开始大量产生SCR催化剂固体废弃物,并会逐年增加,在2020年以后逐步稳定在25×104~30×104 m3/a。废SCR催化剂中Ti的含量最高,约占23.3%~46.2%。W,V,Mo,Ba是SCR催化剂中的活性组分,并且不同SCR催化剂中活性组分的含量并不相同。钒的含量对废SCR催化剂的潜在判定影响较大。SCR催化剂可能会吸附砷、汞、镉等重金属以及各种飞灰成分等物质,从而增加了废SCR催化剂的化学成分。依据《国家危险废物名录》第二条的相关规定,鉴于废烟气脱硝催化剂不排除具有危险特性,且不处理或处理不当可能对环境或者人体健康造成有害影响。基于此,本研究团队将烟气脱硝过程中产生的废钒钛系催化剂建议纳入危险废物统一管理。结论废SCR催化剂是我国近期出现并将长期存在的一种脱硝危废,尚缺乏符合国情的处理处置经验。为了建设"天蓝、地绿、水清"的美丽中国,需要继续探索可行的废SCR催化剂的监督和管理措施,完善各项标准和法规,最终实现对废SCR催化剂进行有效的监管。  相似文献   
375.
中试SAD-ASBR系统处理含盐废水的启动与工艺特性   总被引:2,自引:2,他引:0  
采用ASBR(530 L)接种A~2/O厌氧污泥,考察了厌氧氨氧化(ANAMMOX)的启动及其与反硝化耦合处理含盐废水的脱氮特性,并对菌群结构进行了分析.结果表明,温度35℃±1℃、反应时间为14 h,160 d可实现ANAMMOX的成功启动.稳定运行阶段,ANAMMOX与反硝化耦合(SAD)使得总氮(TN)去除率和去除负荷分别达91.1%和0.45 kg·(m~3·d)~(-1);污泥呈浅红色颗粒状,厌氧氨氧化菌为优势菌,且主要菌属为Candidatus Brocadia(10.6%).此外,采用按梯度逐步提高盐度的驯化方式,可实现SAD对高盐(Cl-浓度8 000 mg·L-1)模拟火电厂废水的高效脱氮除碳,COD和TN去除率分别达93.2%和90.0%.推测SAD中反硝化主要为NO_3~--N→N_2,部分反硝化(NO_3~--N→NO_2~--N)仅占30.3%.  相似文献   
376.
为了解同步硝化内源反硝化除磷(SNEDPR)系统处理低C/N(<3)污水的脱氮除磷特性,采用厌氧/低氧(溶解氧0.5~1.0mg/L)运行的SBR反应器,以低碳城市污水为处理对象,考察了C/N对SNEDPR启动、脱氮除磷性能优化与菌群结构变化的影响.结果表明:进水C/N由4.3提高至5.15时,系统脱氮除磷性能均逐渐增强,系统总氮(TN)和PO43--P去除率最高达89.3%和90.6%;降低进水C/N <3后,系统脱氮、除磷性能均呈现先降低后逐渐升高的趋势,但低C/N对PAOs(聚磷菌)除磷性能的影响高于其对反硝化聚糖菌(DGAOs)内源反硝化脱氮性能的影响,表现为TN和PO43--P去除率分别先降低至21.4%和3.4%后逐渐升高至92.9%和94.1%.系统稳定运行阶段,单位COD平均释磷量和SNED率达437.1mgP/gCOD和89.1%,出水NH4+-N、NOx--N和PO43--P浓度平均为0,4.4,0.2mg/L.经136d的运行,系统内PAOs,GAOs,AOB(氨氧化菌)和NOB(亚硝酸盐氧化菌)分别占全菌的(16±3)%,(8±3)%,(7±3)%和(3±1)%,其保证了系统除磷、硝化和反硝化脱氮性能.此外,系统好氧段存在同步短程硝化内源反硝化,是实现低C/N(<3)污水高效脱氮除磷的原因.  相似文献   
377.
针对城市污水厂尾水氮排放不达标的现象,提出以可生物降解聚合物作为固体碳源的反硝化生物滤池技术。研究结果表明,尾水中氮的去除率会随水力停留时间(HRT)的延长而增加,HRT≤8 h时,去除率增长速度较快;HRT>8 h时,脱氮效率增长趋于平缓。选用聚羟基丁酸戊酸共聚酯(PHBV)为碳源,HRT为8 h时脱氮效果最佳,连续稳定运行30 d,出水硝态氮的去除率达96.1%~97.4%,出水中总氮浓度达GB 3838—2002《地表水环境质量标准》Ⅴ类水标准。  相似文献   
378.
Performance of a full-scale anoxic-oxic activated sludge treatment plant(4.0×10~5 m~3/day for the first-stage project) was followed during a year.The plant performed well for the removal of carbon,nitrogen and phosphorus in the process of treating domestic wastewater within a temperature range of 10.8℃ to 30.5℃.Mass balance calculations indicated that COD utilization mainly occurred in the anoxic phase,accounting for 88.2% of total COD removal.Ammonia nitrogen removal occurred 13.71% in the anoxic zones and 78.77% in the aerobic zones.The contribution of anoxic zones to total nitrogen(TN) removal was 57.41%.Results indicated that nitrogen elimination in the oxic tanks was mainly contributed by simultaneous nitrification and denitrification(SND).The reduction of phosphorus mainly took place in the oxic zones,51.45% of the total removal.Denitrifying phosphorus removal was achieved biologically by 11.29%.Practical experience proved that adaptability to gradually changing temperature of the microbial populations was important to maintain the plant overall stability.Sudden changes in temperature did not cause paralysis of the system just lower removal efficiency,which could be explained by functional redundancy of microorganisms that may compensate the adverse effects of temperature changes to a certain degree.Anoxic-oxic process without internal recycling has great potential to treat low strength wastewater(i.e.,TN 35 mg/L) as well as reducing operation costs.  相似文献   
379.
ClO_2溶液去除烟气中NO的效果及工程应用   总被引:1,自引:0,他引:1  
采用实验室规模喷淋脱硝装置对ClO_2溶液去除NO的效果及影响因素进行探讨,通过脱硝产物的测定对ClO_2溶液去除NO的能力及机理进行分析;在此基础上考察ClO_2溶液对供热厂燃煤锅炉烟气的实际脱硝效果。实验结果表明:在液气比为20L/m~3、反应温度为20℃,反应pH为4.0、进气NO质量浓度为250 mg/m~3,ClO_2质量浓度为200 mg/L的条件下,NO去除率达97%以上;ClO_2溶液可将NO氧化吸收为NO_3~-,氧化后产生的NO_x也可被NaOH溶液吸收转化为NO_2~-和NO_3~-;在ClO_2质量浓度为200~500 mg/L,反应pH为5.5~7.0的条件下处理初始NO质量浓度为212~230 mg/m~3的燃煤锅炉烟气,NO去除率为85.7%~94.6%,NO_x去除率为80.4%~88.8%,出口NO_x质量浓度低于46 mg/m~3,远低于GB 13271—2014规定的排放限值。  相似文献   
380.
基于36座新建桥梁及26座既有旧桥静、动载试验,将其在荷载作用下挠度、应变及振动频率的现场实际值与有限元计算理论值进行对比分析,获取了新旧桥梁的挠度、应变及频率的检验系数,并在此基础上获取了新旧桥梁的承载能力对比情况。结果表明,既有旧桥承载能力下降明显。这将为类似桥梁检测及承载能力评估提供参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号