首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4229篇
  免费   555篇
  国内免费   2726篇
安全科学   143篇
废物处理   198篇
环保管理   398篇
综合类   4527篇
基础理论   897篇
污染及防治   809篇
评价与监测   400篇
社会与环境   128篇
灾害及防治   10篇
  2024年   25篇
  2023年   135篇
  2022年   252篇
  2021年   269篇
  2020年   279篇
  2019年   258篇
  2018年   267篇
  2017年   244篇
  2016年   348篇
  2015年   318篇
  2014年   328篇
  2013年   537篇
  2012年   471篇
  2011年   503篇
  2010年   357篇
  2009年   321篇
  2008年   277篇
  2007年   342篇
  2006年   329篇
  2005年   232篇
  2004年   197篇
  2003年   250篇
  2002年   179篇
  2001年   158篇
  2000年   124篇
  1999年   114篇
  1998年   73篇
  1997年   72篇
  1996年   60篇
  1995年   47篇
  1994年   45篇
  1993年   29篇
  1992年   18篇
  1991年   16篇
  1990年   6篇
  1989年   7篇
  1988年   3篇
  1987年   5篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1981年   2篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
排序方式: 共有7510条查询结果,搜索用时 15 毫秒
1.
为探究长春秋季生物质燃烧对PM_(2.5)中水溶性有机碳(water-soluble organic carbon,WSOC)吸光性的影响,于2017年10~11月进行PM_(2.5)样品采集,对PM_(2.5)中碳质组分、糖类化合物和WSOC的光吸收特征参数进行分析.研究表明:长春秋季PM_(2.5)中WSOC、有机碳(organic carbon,OC)、元素碳(elemental carbon,EC)的平均浓度分别为(10.12±3.47)、(17.07±5.64)和(1.34±0.75)μg·m~(-3),二次有机碳(secondary organic carbon,SOC)对OC的平均贡献率为38.93%.长春秋季总糖浓度为(1 049.39±958.85)ng·m~(-3),其中作为生物质燃烧示踪剂的脱水糖含量(左旋葡聚糖、半乳聚糖和甘露聚糖)在总糖中占比为91.69%,糖类相关性分析结果显示生物质燃烧源为长春秋季大气中糖类物质的主要贡献源.糖类物质的相关性分析及3种脱水糖的特征比值研究显示,作为长春秋季大气主要污染源的生物质燃烧的类型是硬木和作物残渣的燃烧.长春秋季WSOC的光吸收波长指数(AAE)为5.75±1.06,单位质量吸收效率(MAE)为(1.23±0.28)m~2·g~(-1),表明生物质燃烧对WSOC吸光性具有重要影响.利用生物质燃烧特征源参数量化计算生物质燃烧对WSOC浓度的贡献达58.82%,对总WSOC光吸收的贡献达40.92%.  相似文献   
2.
利用GC5000在线气相色谱仪于2018年4月15日~5月15日对郑州市城区环境大气挥发性有机物(VOCs)进行监测,开展其污染特征、臭氧生成潜势(OFP)和来源解析研究.结果表明,监测期间,郑州市春季VOCs平均体积分数为40.26×10~(-9),非污染日和污染日VOCs平均体积分数分别为35.82×10~(-9)和44.12×10~(-9),污染日相较非污染日增长23%;VOCs物种对OFP的贡献表现为烯烃芳香烃烷烃炔烃;源解析结果显示监测期间郑州市VOCs主要来源是LPG源(66.05%)、机动车源(47.39%)、工业溶剂源(37.51%)、燃烧源(37.80%)和植物排放源(11.25%),且污染日的LPG源和植物排放源的贡献率较非污染日增长22.92%和68.50%.  相似文献   
3.
降水空间异质性对非点源关键源区识别面积变化的影响   总被引:3,自引:2,他引:1  
针对地形起伏和降水空间差异较大的农业区非点源污染问题,基于SWAT模型评估了阿什河流域在异质性降水和均匀降水两种情景下总氮、总磷关键源区空间变化规律,统计了两种情景下识别的关键源区面积变化,并分析其与降水特征参数的关系.结果表明,降水量一定时,两种情景下识别的总氮、总磷关键源区面积变化趋势大致相同,且总磷关键源区面积不易受降水空间异质性的影响,但总氮关键源区面积却明显受到其影响.对各年份总氮和总磷关键源区面积与降水特征参数的相关分析表明,总磷关键源区面积与当年降水量呈显著正相关,而总氮关键源区面积却与前一年降水量呈显著正相关.研究结果对进一步探讨降水这一重要驱动因子的不确定性对非点源污染关键源区的影响,以及农业非点源污染的治理具有重要意义.  相似文献   
4.
北京南部城区PM2.5中碳质组分特征   总被引:5,自引:3,他引:2  
为了解《大气污染防治行动计划》实施后北京市大气PM2.5中碳质组分特征,于2017年12月至2018年12月在北京污染较重的南部城区进行了PM2.5连续采样,对其中的有机碳(OC)和元素碳(EC)进行了全面研究.结果表明,北京大气PM2.5、OC和EC浓度变化范围分别为4.2~366.3、0.9~74.5和0.0~5.5 μg ·m-3,平均浓度分别为(77.1±52.1)、(11.2±7.8)和(1.2±0.8)μg ·m-3,碳质组分(OC和EC)整体占PM2.5的16.1%.OC质量浓度季节特征表现为:冬季[(13.8±8.7)μg ·m-3] > 春季[(12.7±9.6)μg ·m-3] > 秋季[(11.8±6.2)μg ·m-3] > 夏季[(6.5±2.1)μg ·m-3],EC四季质量浓度水平均较低,范围为0.8~1.5 μg ·m-3.二次有机碳(SOC)年均质量浓度为(5.4±5.8)μg ·m-3,四季贡献比例范围为45.7%~52.3%,年均贡献为48.2%,凸显了二次形成的重要贡献.随污染加重,尽管OC和EC贡献比例均降低,但浓度水平却成倍升高,OC和EC浓度在严重污染天分别是空气质量为优天的6.3和3.2倍.与非供暖时段相比,供暖时段PM2.5、OC和SOC浓度分别增加了14.4%、47.9%和72.1%,体现了OC对供暖季PM2.5污染的重要贡献.PSCF分析表明,位于北京西南的山西省和河南省部分区域是PM2.5和OC的主要潜在源区,且PM2.5潜在源区更为集中;EC的PSCF高值(>0.7)区域较少,主要位于北京南部,如山东省和河南省部分地区,且北京市及周边地区贡献明显.  相似文献   
5.
采用共缩聚法,成功地原位合成了碘改性的阶层多孔氧化硅纳米球(SiO2-I),研究了其基于卤键作用对典型有机氯污染物六六六的吸附性能,并考察了改性剂I-硅烷含量和pH值对吸附效果的影响.实验结果表明,该纳米材料对六六六表现出优异的吸附富集性能,吸附速率快,60 min内对六六六的去除率为71.6%,240 min内达到吸附平衡,去除率可达98.3%,最大吸附量为178.6 mg·g-1;吸附动力学符合拟二级动力学模型;碘物种的加入提高了阶层多孔氧化硅的吸附速率和吸附效率.另外,为了便于纳米吸附材料的分离,本研究对SiO2-I纳米球进行了磁性化.研究发现,磁性化修饰后,SiO2-I纳米材料仍然保留对六六六优异的吸附富集性能,240 min时的吸附去除率达90.3%.  相似文献   
6.
使用2004~2015年的中国280个地级市的面板数据,对科技创新投入与环境全要素生产率间的非线性关系、内部影响机理和空间异质性进行分析,结果显示:科技创新投入与环境全要素生产率之间呈现倒N型关系,两个拐点的位置分别为7.722(2257.47万元)和9.610(14913.17万元);在外部资本进入、污染治理、市场规模效应3种影响路径中,科技创新投入影响下的外部资本进入对环境全要素生产率依然存在污染避难所的负向效应,科技创新投入与外部资本间效应为0.1363,外部资本与环境全要素生产率间效应为-0.0065;科技创新投入能够增强企业的污染治理技术并提高环境全要素生产率,三者间前后效应分别为-0.0277和-0.0311;科技创新的投入与高效益增强了市场规模效应,有效促进生产结构的转型进而提高环境全要素生产率,三者间前后效应为0.0186和0.4346.空间异质性中,外部资本进入与溢出效应带来的污染避难所负效应在中部地区显著,在西部和东北部地区不显著,而污染天堂正效应在东部地区存在但不显著;污染创新治理投入的技术正溢出效应在东部和西部地区效应显著,在中部和东北部不显著;科技创新投入与市场需求规模效应在空间区域无差异且显著为正.建议依据科技创新投入的不同影响路径来实施空间差异化策略.  相似文献   
7.
对2017年9月~2018年8月深圳市北部大气PM2.5中水溶性有机物(WSOM)的质量浓度、质谱及来源结构进行测量和分析.结果表明:PM2.5的质量浓度为(32.3±18.4)μg/m3,WSOM的质量浓度为(9.4±5.7)μg/m3,占颗粒物总有机物的(77.6%±14.0%).质谱分析显示,WSOM的氧碳比(O/C)平均值达到(0.57±0.09),属于二次有机物的O/C值范围,且生物质燃烧排放的离子碎片C2H4O2+的丰度显著,说明WSOM的来源中有显著的生物质燃烧排放的有机气溶胶.为了明确WSOM的来源结构,利用正矩阵因子分解法(PMF)模型进行来源解析,发现3个合理因子:高氧化态有机气溶胶(MO-OOA),低氧化态有机气溶胶(LO-OOA)和生物质燃烧(BBOA),贡献比例分别为51.7%,31.8%和16.5%.MO-OOA和BBOA贡献浓度均呈现秋冬高、春夏低的季节变化特征,反向轨迹分析显示其与内陆污染传输关系密切.LO-OOA的变化相对稳定,本地源的贡献较大.结合14C同位素示踪法对秋冬季WSOM样品分析,发现机动车等化石源二次有机物是WSOM的主要来源,贡献比例达到53.9%,需继续加强对化石燃料控制来降低WSOM污染.  相似文献   
8.
利用流动管反应器模拟甲苯与氧化剂×OH在NOx存在条件下的反应,定量测定了不同相对湿度条件下(17.5%、35%、50%、70%)反应生成的部分气相产物和颗粒相产物,计算了不同相中产物产率,测量了不同相对湿度下的颗粒相有机碳(OC)产率,推导了相对湿度对甲苯氧化反应的影响机制.结果表明,相对湿度不仅对甲苯与×OH反应途径比例有影响,还对产物的产率及氧化程度有影响.  相似文献   
9.
对比了浙江省2014和2018年金属表面涂装企业的有机废气排放及治理情况,分析了该行业涂料及稀释剂的使用、主要污染因子,测算了溶剂型、水性涂料的挥发性有机物(VOCs)产生系数和排放系数.结果表明:2018年VOCs治理水平明显高于2014年,水性涂料使用企业比例由18%上升至36%,纯溶剂型企业由82%下降至64%;金属表面涂装行业的主要排放污染物为二甲苯、丁醇、乙酸乙酯、乙酸丁酯、甲苯、丙二醇、乙苯、苯乙烯等8种有机物.溶剂型和水性涂料的VOCs产生系数分别为0.72和0.31kg/kg;溶剂型和水性涂料2014年VOCs排放系数为0.64和0.29kg/kg,2018年为0.48和0.21kg/kg.  相似文献   
10.
模拟废印刷线路板(WPCB)的热拆解过程,分析热拆解过程中的挥发性有机物(VOCs)组分;利用真实溶剂似导体屏蔽(COSMO-RS)模型对浓度较高的污染物进行量子力学模拟,研究离子液体(ILs)组成单元对目标污染物溶解度的影响差异,分析溶解过程中主导分子间作用力类型,确定优选吸收剂;测定不同溶剂进行溶解性,验证模型适用性.结果表明:①乙酸乙酯和环戊酮是浓度较高的VOCs组分,在240和250℃时浓度分别为43.1,153mg/m3和105,252mg/m3,质量百分比总和分别为76.3%和67.3%.②高表面屏蔽电荷密度分布峰、长烷基链阴阳离子和亲电基团的存在可提高乙酸乙酯和环戊酮在ILs中的溶解度.双三氟甲磺酰基亚胺盐(NTf2-)类ILs是一类优良吸收剂.静电力和范德华力对溶解过程起主导作用.③COSMO-RS模型可定性和半定量用于预测乙酸乙酯和环戊酮的溶解度.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号