首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34352篇
  免费   2498篇
  国内免费   8686篇
安全科学   3458篇
废物处理   681篇
环保管理   6849篇
综合类   21042篇
基础理论   4684篇
环境理论   10篇
污染及防治   3540篇
评价与监测   2184篇
社会与环境   1946篇
灾害及防治   1142篇
  2024年   182篇
  2023年   741篇
  2022年   1133篇
  2021年   1254篇
  2020年   1318篇
  2019年   1121篇
  2018年   1009篇
  2017年   1352篇
  2016年   1660篇
  2015年   1671篇
  2014年   1779篇
  2013年   2411篇
  2012年   2483篇
  2011年   2638篇
  2010年   1926篇
  2009年   2020篇
  2008年   1548篇
  2007年   2383篇
  2006年   2314篇
  2005年   1886篇
  2004年   1686篇
  2003年   1636篇
  2002年   1369篇
  2001年   1189篇
  2000年   1085篇
  1999年   957篇
  1998年   662篇
  1997年   594篇
  1996年   482篇
  1995年   458篇
  1994年   381篇
  1993年   349篇
  1992年   239篇
  1991年   188篇
  1990年   152篇
  1989年   120篇
  1988年   111篇
  1987年   98篇
  1986年   61篇
  1985年   42篇
  1984年   71篇
  1983年   77篇
  1982年   71篇
  1981年   82篇
  1980年   94篇
  1979年   86篇
  1978年   56篇
  1977年   49篇
  1973年   48篇
  1971年   63篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
301.
This article develops a practical proposal for progress on sustainable development law. It examines the prospects for an international sustainable development law to provide a framework for more effective, coherent governance. Sustainable development law is briefly defined and an analytical framework is provided. Different degrees of integration between economic, social and environmental law are described. Certain principles of international law related to sustainable development are also highlighted. It is argued that these principles may serve to guide law‐makers and jurists where social, economic and environmental law and policy conflict or overlap. Continuing, underlying questions of sustainable development governance are addressed and its global frameworks analysed. The article also focuses on the 2002 World Summit on Sustainable Development, held in Johannesburg in August‐September 2002, and its specific mandate for the United Nations Commission on Sustainable Development (UNCSD) to take related legal developments into account. The article advances a proposal: that governments, economic, social and environmental intergovernmental organizations and other actors establish a ‘network of inquiry’ with members from relevant groups, including legal and academic organizations, and other expert groups, in order to follow, research, analyse and debate legal developments in a balanced way.  相似文献   
302.
The article states the case for greatly enhanced reliance on desalination in the provision of freshwater. It argues that the concept of integrated water resource management (IWRM), should be expanded to routinely include desalination, and that sea water and brackish water should be listed among available sources of freshwater. In recent years, the price per m3 of freshwater obtained from desalination has steadily declined, and is now within competitive range of conventional sources, especially as extracting water from surface sources (rivers, lakes) is becoming increasingly expensive as well as ecologically harmful, and groundwater in many locations is saline or depleted. With the expectation that by 2020, five billion people will reside in megacities, today's conventional water resources are likely to become insufficient. As many of these megacities are located near ocean coasts, sea water seems a logical solution.  相似文献   
303.
More than 50,000 tons of hazardous waste are imported and exported worldwide each year. Over 50% of hazardous waste is exported to Southeast Asia, of which leather waste is the major component. The exportation quantities of hazardous waste to Organization of Economic Cooperation and Development (OECD) countries are decreasing while they are on the increase to non-OECD countries. Some of these wastes are intended for recycling purposes but the usage of some others is not stipulated. The hazardous waste importation quantity kept fairly steady from 1997 to 2000, of which ash or residues containing copper or copper compounds were the major component. Under existing regulations and measures, the transboundary movement of hazardous waste cannot be effectively controlled and monitored. In order to ensure environmentally sound hazardous waste management, EPA-Taiwan revised the Waste Disposal Act in 2001 and cooperated with the Industrial Development Bureau (IDB) to promote industrial waste reduction and recycling projects. Strategies were proposed based on evaluation according to the 3Es Principles and the site investigation in this study.  相似文献   
304.
Environmental assessment of supercritical water oxidation of sewage sludge   总被引:1,自引:0,他引:1  
Environmental aspects of using supercritical water oxidation (SCWO) to treat sewage sludge were studied using a life cycle assessment (LCA) methodology. The system studied is the first commercial scale SCWO plant for sewage sludge in the world, treating sludge from the municipal wastewater treatment facility in Harlingen, TX, USA. The environmental impacts were evaluated using three specific environmental attributes: global warming potential (GWP), photo-oxidant creation potential (POCP) and resource depletion; as well as two single point indicators: EPS2000 and EcoIndicator99. The LCA results show that for the described process, gas-fired preheating of the sludge is the major contributor to environmental impacts, and emissions from generating electricity for pumping and for oxygen production are also important. Overall, SCWO processing of undigested sewage sludge is an environmentally attractive technology, particularly when heat is recovered from the process. Energy-conserving measures and recovery of excess oxygen from the SCWO process should be considered for improving the sustainability potential.  相似文献   
305.
ABSTRACT: This paper presents a modeling approach based on a geographic information system (GIS) to estimate the variability of on‐ground nitrogen loading and the corresponding nitrate leaching to ground water. The methodology integrates all point and nonpoint sources of nitrogen, the national land cover database, soil nitrogen transformations, and the uncertainty of key soil and land use‐related parameters to predict the nitrate mass leaching to ground water. The analysis considered 21 different land use classes with information derived from nitrogen sources such as fertilizer and dairy manure applications, dairy lagoons, septic systems, and dry and wet depositions. Simulations were performed at a temporal resolution of one month to capture seasonal trends. The model was applied to a large aquifer of 376 square miles in Washington State that serves more than 100,000 residents with drinking water. The results showed that dairy manure is the main source of nitrogen in the area followed by fertilizers. It was also seen that nitrate leaching is controlled by the recharge rate, and there can be a substantial buildup of soil nitrogen over long periods of time. Uncertainty analysis showed that denitrification rate is the most influential parameter on nitrate leaching. The results showed that combining management alternatives is a successful strategy, especially with the use of nitrification inhibitors. Also, change in the land use pattern has a noticeable impact on nitrate leaching.  相似文献   
306.
ABSTRACT: Surface and subsurface drainage make crop production economically viable in much of southern Minnesota because drainage allows timely field operations and protects field crops from extended periods of flooded soil conditions. However, subsurface drainage has been shown to increase nitrate/nitrogen losses to receiving waters. When engaging in drainage activities, farmers are increasingly being asked to consider, apart from the economic profit, the environmental impact of drainage. The Agricultural Drainage and Pesticide Transport model (ADAPT) was used in this study to evaluate the impact of subsurface drainage design on the soil water balance over a two‐year period during which observed drainage discharge data were available. Twelve modeling scenarios incorporated four drainage coefficients (DC), 0.64 cm/d, 0.95 cm/d, 1.27 cm/d, and 1.91 cm/d, and three drain depths, 0.84 m, 1.15 m, and 1.45 m. The baseline condition corresponded to the drainage system specifications at the field site: a drain depth and spacing of 1.45 m and 28 m, respectively (DC of 0.64 cm/d). The results of the two‐year simulation suggested that for a given drainage coefficient, soils with the shallower drains (but equal DC) generally have less subsurface drainage and can produce more runoff (but reduced total discharge) and evapotranspiration. The results also suggested that it may be possible to design for both water/nitrate/nitrogen reduction and crop water needs.  相似文献   
307.
ABSTRACT: Computer programs that model the fate and transport of organic contaminants through porous media typically use Fick's first law to calculate vapor phase diffusion. Fick's first law, however, is limited to the case of a single, dilute species diffusing into a stagnant, high concentration, bulk vapor phase. When dealing with more than one diffusing species and at higher concentrations, the multicomponent coupling effects on vapor phase diffusion and advection of the various constituents become significant. VLEACH, a one‐dimensional finite difference model developed for the U.S. Environmental Protection Agency (USEPA), is typical of the models using Fick's first law to model vapor‐phase diffusion. The VLEACH model was modified to accommodate up to 10 components and to calculate the binary diffusion coefficients for each of the components based on molecular weight, molecular volume, temperature and pressure, and to address the coupling effects on multiple component vapor phase diffusion and its impact on ground water. The resulting model was renamed MC‐CHEMSOIL. At low vapor phase concentrations, MC‐CHEMSOIL predicts identical ground water impacts (dissolved phase loading) to those from VLEACH 2.2a. At higher vapor phase concentrations, however, the relative difference between the models exceeded 20 percent.  相似文献   
308.
ABSTRACT: This paper studies the effectiveness of alternative farm management strategies at improving water quality to meet Total Maximum Daily Loads (TMDLs) in agricultural watersheds. A spatial process model was calibrated using monthly flow, sediment, and phosphorus (P) losses (1994 to 1996) from Sand Creek watershed in south‐central Minnesota. Statistical evaluation of predicted and observed data gave r2 coefficients of 0.75, 0.69, and 0.49 for flow (average 4.1 m3/s), sediment load (average 0.44 ton/ha), and phosphorus load (average 0.97 kg/ha), respectively. The calibrated model was used to evaluate the effects of conservation tillage, conversion of crop land to pasture, and changes in phosphorus fertilizer application rate on pollutant loads. TMDLs were developed for sediment and P losses based on existing water quality standards and guidelines. Observed annual sediment and P losses exceeded these TMDLs by 59 percent and 83 percent, respectively. A combination of increased conservation tillage, reduced application rates of phosphorus fertilizer, and conversion of crop land to pasture could reduce sediment and phosphorus loads by 23 percent and 20 percent of existing loads, respectively. These reductions are much less than needed to meet TMDLs, suggesting that control of sediment using buffer strips and control of point sources of phosphorus are needed for the remaining reductions.  相似文献   
309.
ABSTRACT: Dynamic linear models (DLM) and seasonal trend decomposition (STL) using local regression, or LOESS, were used to analyze the 50‐year time series of suspended sediment concentrations for the Yadkin River, measured at the U.S. Geological Survey station at Yadkin College, North Carolina. A DLM with constant trend, seasonality, and a log10 streamflow regressor provided the best model to predict monthly mean log10 suspended sediment concentrations, based on the forecast log likelihood. Using DLM, there was evidence (odds approximately 69:1) that the log10 streamflow versus log10 suspended sediment concentration relationship has changed, with an approximate 20 percent increase in the log10 streamflow coefficient over the period 1981 to 1996. However, sediment concentrations in the Yadkin River have decreased during the decade of the 1990s, which has been accompanied by a concomitant increase in streamflow variability. Although STL has been shown to be a versatile trend analysis technique, DLM is shown to be more suitable for discovery and inference of structural changes (trends) in the model coefficient describing the relationship between flow and sediment concentration.  相似文献   
310.
ABSTRACT: The objective of this study was to examine the chemistry of Coalbed Methane (CBM) discharge water reacting with semi‐arid ephemeral stream channels in the Powder River Basin, Wyoming. The study area consisted of two ephemeral streams: Burger Draw and Sue Draw. These streams are tributaries to the perennial Powder River. Samples were collected bimonthly from three CBM discharge points and seven channel locations in Burger Draw and Sue Draw. Samples were also collected bimonthly from the Powder River above and below the confluence of Burger Draw. Before sample collection, the pH and electrical conductivity (EC) were measured in the field. Samples were transported to the laboratory and analyzed for alkalinity, major cations, and anions. From the measurement of sodium (Na), calcium (Ca), and magnesium (Mg), practical sodium adsorption ratio (SARp) and true sodium adsorption ratio (SARt) were calculated. Results suggest pH and EC of CBM discharge water was 7.1 and 4.3 dS/m, respectively. The CBM discharge water consisted of higher concentrations of sodium and alkalinity compared to other components. The pH of CBM discharge water increased significantly (p = 0.000) in the downstream channel of Burger Draw from 7.1 to 8.84 before it joined with the Powder River. Dissolved calcium concentration of CBM discharge water decreased significantly (p = 0.000) in the downstream channel water. Subsequently, SARp increased approximately from 24 to 29. The SARt also increased significantly (p = 0.001) in the downstream channel water. For instance, SARt of CBM discharge water increased from 32.93 to 45.5 downstream channels after the confluence of Sue Draw with the Burger Draw. The only significant difference in water chemistry above and below the confluence of Burger Draw with the Powder River was pH, which increased from 8.36 to 8.52. The significant increase in SAR values of CBM discharge water in Burger Draw and Sue Draw tributaries suggest a careful monitoring of salinity and sodicity is needed if CBM discharge water is used for irrigation in semi‐arid environments. Results discussed in this study will be useful to downstream water users who depend on water for irrigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号