首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2560篇
  免费   304篇
  国内免费   1818篇
安全科学   217篇
废物处理   193篇
环保管理   259篇
综合类   2807篇
基础理论   356篇
环境理论   1篇
污染及防治   776篇
评价与监测   48篇
社会与环境   18篇
灾害及防治   7篇
  2024年   7篇
  2023年   35篇
  2022年   89篇
  2021年   139篇
  2020年   135篇
  2019年   157篇
  2018年   135篇
  2017年   119篇
  2016年   173篇
  2015年   223篇
  2014年   245篇
  2013年   280篇
  2012年   317篇
  2011年   304篇
  2010年   241篇
  2009年   302篇
  2008年   176篇
  2007年   308篇
  2006年   279篇
  2005年   203篇
  2004年   143篇
  2003年   157篇
  2002年   91篇
  2001年   84篇
  2000年   88篇
  1999年   67篇
  1998年   32篇
  1997年   46篇
  1996年   27篇
  1995年   22篇
  1994年   15篇
  1993年   13篇
  1992年   13篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1982年   2篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有4682条查询结果,搜索用时 15 毫秒
171.
不同条件下高炉渣吸附水中无机磷的研究   总被引:2,自引:1,他引:1  
高炉渣(BFS)是在冶炼生铁过程中产生的固体废弃物,开展高炉渣的资源化研究具有重要意义.为了对水淬高炉渣净化含磷污水的应用提供理论依据,采取等温吸附的实验方法,比较了不同水淬炉渣的吸附磷效果,研究了不同pH和不同温度下水淬炉渣吸附磷的特点,结果如下:利用Langmuir等温吸附方程炉渣吸附磷的过程进行拟合,其相关系数均能达到显著水平.炉渣的碱度越高,吸附磷的效果越好;炉渣对磷的吸附能力随溶液pH的增加而降低,且初始为酸性(pH=2、4)的溶液在吸附达到平衡后pH有所上升,而初始为碱性的溶液(pH=10、12)在吸附达到平衡后pH有所下降;炉渣对磷的吸附是一个自发放热过程.  相似文献   
172.
A2/O工艺中的反硝化除磷   总被引:7,自引:2,他引:5  
A2/O工艺是一种最简单的同步脱氮除磷工艺,但由于其系统中固有的基质竞争和污泥龄等矛盾,在实际应用中特别是处理低C/N比污水时脱氮除磷效率较低.反硝化除磷工艺作为近年来颇受关注的污水生物处理新技术.由于在脱氮除磷过程中可以在碳源利用上耦合,可从一定程度上缓解A2/O工艺中的基质竞争矛盾,使得其在处理低C/N比污水时也能实现较高的脱氮除磷效率.就反硝化除磷的技术原理,结合其在A2/O工艺中的最新研究成果及其控制策略,对A2/O工艺中的反硝化除磷的实现、维持及影响因素进行了分析和探讨,并对其发展方向进行了展望.  相似文献   
173.
An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 μg L−1. Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L−1 of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 μg L−1. This highly effective arsenic removal method is easy to use and inexpensive to implement.  相似文献   
174.
During the period from July 2002 to June 2004, the chemical characteristics of the rainwater samples collected in downtown São Paulo were investigated. The analysis of 224 wet-only precipitation samples included pH and electrical conductivity, as well as major ions (Na+, $ \rm NH^{ + }_{4} During the period from July 2002 to June 2004, the chemical characteristics of the rainwater samples collected in downtown S?o Paulo were investigated. The analysis of 224 wet-only precipitation samples included pH and electrical conductivity, as well as major ions (Na+, , K+, Ca2+, Mg2+, Cl, , ) and carboxylic acids (acetic, formic and oxalic) using ion chromatography. The volume weighted mean, VWM, of the anions , and Cl was, respectively, 20.3, 12.1 and 10.7 μmol l−1. Rainwater in S?o Paulo was acidic, with 55% of the samples exhibiting a pH below 5.6. The VWM of the free H+ was 6.27 μmol l−1), corresponding to a pH of 5.20. Ammonia (NH3), determined as (VWM = 32.8 μmol l−1), was the main acidity neutralizing agent. Considering that the H+ ion is the only counter ion produced from the non-sea-salt fraction of the dissociated anions, the contribution of each anion to the free acidity potential has the following profile: (31.1%), (26.0%), CH3COO (22.0%), Cl (13.7%), HCOO (5.4%) and (1.8%). The precipitation chemistry showed seasonal differences, with higher concentrations of ammonium and calcium during autumn and winter (dry period). The marine contribution was not significant, while the direct vehicular emission showed to be relevant in the ionic composition of precipitation.  相似文献   
175.
This study examines the feasibility of coupling a Catalytic Wet Air Oxidation (CWAO), with activated carbon (AC) as catalyst, and an aerobic biological treatment to treat a high-strength o-cresol wastewater. Two goals are pursued: (a) To determine the effect of the main AC/CWAO intermediates on the activated sludge of a municipal WasteWater Treatment Plant (WWTP) and (b) To demonstrate the feasibility of coupling the AC/CWAO effluent as a part of the influent of a municipal WWTP. In a previous study, a high-strength o-cresol wastewater was treated by AC/CWAO aiming to establish the distribution of intermediates and the biodegradability enhancement. In this work, the biodegradability, toxicity and inhibition of the most relevant intermediates detected in the AC/CWAO effluent were determined by respirometry. Also, the results of a pilot scale municipal WWTP study for an integrated AC/CWAO-aerobic biological treatment of this effluent are presented. The biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) of main AC/CWAO intermediates allowed the classification of the intermediates into readily biodegradable, inert or toxic/inhibitory compounds. This detailed study, allowed to understand the biodegradability enhancement exhibited by an AC/CWAO effluent and to achieve a successful strategy for coupling the AC/CWAO step with an aerobic biological treatment for a high-strength o-cresol wastewater. Using 30%, as COD, of AC/CWAO effluent in the inlet to the pilot scale WWTP, the integrated AC/CWAO-biological treatment achieved a 98% of total COD removal and, particularly, a 91% of AC/CWAO effluent COD removal without any undesirable effect on the biomass.  相似文献   
176.
Goals, Scope and Background It has been observed that hydrocarbon treated wastewaters still contain high COD and a number of intermediates. This suggests that the required catabolic gene pool for further degradation might be absent in the system or, that its titer value is not significant enough. By providing the desired catabolic potential, the overall efficiency of the treatment system can be improved. This study aims to demonstrate this concept by bioaugmentation of a lab-scale reactor treating refinery wastewater with a consortium having the capacity to complement the alkB genotype to the available microbial population. Methods Two reactors were set up using activated biomass collected from a refinery treatment plant and operated at a continuous mode for a period of 8 weeks. The feed to both reactors was kept constant. Crude oil was spiked regularly. One reactor was bioaugmented with a consortium previously described for crude oil spill remediation. The efficiency of the bioaugmented reactor was demonstrated by reduced COD. The changes in the microbial population over a period of time were analyzed by RAPD. Catabolic activity of the biomass in both reactors was monitored by PCR. The presence of the catabolic loci was confirmed by Southern Hybridization. Results and Discussion 52.2% removal of COD was observed in the bioaugmented reactor while only 15.1% reduction of COD was observed in the reactor without bioaugmentation. The change in microbial population can be seen from the 4th week, which also corresponds to improved catabolic activity. The presence of the bedA locus was seen in all samples, which indicates the presence of aromatic degraders, but the appearance of the alkB locus, from the 6th week onwards, which was observed only in the samples from the bioaugmented reactor. The results suggest that the gene pool of the bioaugmented reactor has catabolic loci that can degrade accumulated intermediates, thus improving the efficiency of the system. Conclusions In this study, improvement of efficiency of bioremediation was demonstrated by addition of catabolic loci that are responsible for degradation. Bioaugmentation was carried out in biomass that was collected from an ETP (effluent treatment plant) treating hydrocarbon containing wastewater to study the strategies for improvement of the treatment system. Biostimulation, only marginally improved the efficiency, when compared to bioaugmentation. The improved efficiency was demonstrated by COD removal. The presence of the alkB locus suggests the importance of a catabolic gene pool that acts on accumulated intermediates. It is well documented that straight chain aliphatics and intermediates of aromatic compounds after ring cleavage, accumulate in refinery wastewater systems, thereby hindering further degradation of the wastewater. Supplementation of a catabolic gene pool that treats the lower pathway compounds and alkanes will improve the overall efficiency. In this study, results suggest that the alkB locus can also be used to monitor the degradative mode of the activated biomass. Recommendations and Perspective . Pollution from petroleum and petroleum products around the globe are known to have grave consequences on the environment. Bioremediation, using activated sludge, is one option for the treatment of such wastes. Effluent treatment plants are usually unable to completely degrade the wastewater being treated in the biological unit (the aerator chambers). The efficiency of degradation can be improved by biostimulation and bioaugmentation. This study demonstrates the improved efficiency of a treatment system for wastewater containing hydrocarbons by bioaugmentation of a consortium that supports degradation. Further experiments on a pilot scale are recommended to assess the use of bioaugmentation on a large scale. The use of molecular tools, like DNA probes for alkB, to monitor the system also needs to be explored.  相似文献   
177.

Background, Aim and Scope

The presence of heavy metals in wastewater is one of the main causes of water and soil pollution. The aim of the present study was to investigate the removal of Cd, Cu, Pb, Hg, Mn, Cr and Zn in urban effluent by a biological wastewater treatment, as well as to quantify the levels of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Sn, Tl, V and Zn in dewatering sludge from the Biological Wastewater Treatment Plant to Ribeirão Preto (RP-BWTP), Brazil.

Materials and Methods

Concentrations of Cd, Cr, Cu, Mn and Pb in wastewater and those of Ni in sludge were determined by atomic absorption spectrophotometry with graphite furnace atomization. Mercury concentrations in wastewater were measured by hydride generation atomic spectrophotometry, and Zn levels were determined by atomic absorption spectrophotometry using acetylene flame. In sludge, the levels of As, Be, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Sn, Tl, V and Zn were determined by inductively coupled plasma-mass spectrometry.

Results

The percentages of removal efficiency (RE) were the following: Hg 61.5%, Cd 60.0%, Zn 44.9%, Cu 44.2%, PB 39.7%, Cr 16,5% and Mn 10.4%. In turn, the mean concentrations (mg/kg) of metals in dewatering sludge followed this increasing order: Tl (<0.03), Hg (0.31), Be (0.43), As (1.14), Cd (1.34), V (59.2), Pb (132.1), Sn (166.1), Cr (195.0), Mn (208.1), Ni (239.4), Cu (391.7), Zn (864.4) and Fe (20537).

Discussion

The relationship between metal levels in untreated wastewater, as well as the removal efficiency are in agreement with previous data from various investigators, It is important to note that metal removal efficiency is not only affected by metal ion species and concentration, but also by other conditions such as operating parameters, physical, chemical, and biological factors.

Conclusions

Metal values recorded for treated wastewater and sludge were within the maximum permitted levels established by the Environmental Sanitation Company (CETESB), São Paulo, Brazil.

Recommendations

There is an urgent need for the authorities who are responsible for legislation on sludge uses in agriculture of establishing safety levels for As, Be, Hg, Sn, Tl and V.

Perspectives

According to the current metal levels, RP-BWTP sludge might be used for agriculture purposes. However, for an environmentally safe use of sewage sludge, further studies including systematic monitoring are recommended. Annual metal concentrations and predicted variations of those elements in the sludge should be monitored.
  相似文献   
178.
生物滤池对气相与液相中污染物质的净化   总被引:4,自引:0,他引:4  
通过实验室研究探讨了生物滤池同时处理废水和废气的可行性。试验结果表明:在25℃-37℃条件下,甲苯废气的流量为90L/h,甲苯浓度为500mg/m^3;废水的流量为0.4L/h,CODcr浓度为400-750mg/L,甲苯与CODcr的去除率分别是70%-72%和86%-89%。  相似文献   
179.
李楠  王鹏  宋伦  邵泽伟  赵海勃 《化工环保》2018,38(3):300-304
以颗粒活性炭(GAC)为载体、铜为活性组分、铈为助剂组分、草酸钠为沉淀剂,采用浸渍焙烧法制得CuO_x-CeO_2/GAC催化剂。以H_2O_2为氧化剂,微波强化催化湿式过氧化氢氧化(CWPO)处理二甲亚砜(DMSO)初始质量浓度为1 000 mg/L的废水,处理3 min后DMSO去除率达93.8%。催化剂第7次使用时DMSO去除率仍保持在75%以上。初始废水pH在3~9范围内,DMSO去除率均在85%以上。助剂Ce的加入提高了催化剂表面活性组分的分散性和稳定性,使催化剂的活性稳定性和使用寿命显著提高。  相似文献   
180.
采用溶胶-凝胶法制备了Mn掺杂钙钛矿型催化剂LaFexMn1-xO3,并以其为催化剂催化湿式双氧水氧化处理煤气化废水纳滤浓缩液。采用XRD,SEM,FTIR技术对催化剂进行了表征。表征结果显示:制备的催化剂均具有标准的钙钛矿型结构,其中,LaFe0.9Mn0.1O3的结构稳定,比表面积大。实验结果表明:制备的催化剂中LaFe0.9Mn0.1O3的催化活性最高,且稳定性好,连续使用5次后催化活性未见明显减弱;在H2O2投加量3.0 g/L、n(H2O2)∶n(LaFe0.9Mn0.1O3)=12∶1、反应温度160 ℃、反应压力1 MPa、浓缩液pH 3、反应时间60 min的最优条件下,COD、UV254和TOC的去除率分别达到80.9%、95.2%和68.0%,BOD5/COD由0.02提升至0.40,可生化性大幅提高。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号