首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   646篇
  免费   118篇
  国内免费   99篇
安全科学   132篇
废物处理   16篇
环保管理   123篇
综合类   387篇
基础理论   53篇
环境理论   1篇
污染及防治   12篇
评价与监测   35篇
社会与环境   27篇
灾害及防治   77篇
  2024年   3篇
  2023年   10篇
  2022年   37篇
  2021年   32篇
  2020年   44篇
  2019年   29篇
  2018年   29篇
  2017年   37篇
  2016年   50篇
  2015年   37篇
  2014年   29篇
  2013年   45篇
  2012年   55篇
  2011年   60篇
  2010年   44篇
  2009年   29篇
  2008年   23篇
  2007年   33篇
  2006年   29篇
  2005年   34篇
  2004年   26篇
  2003年   29篇
  2002年   17篇
  2001年   16篇
  2000年   17篇
  1999年   9篇
  1998年   14篇
  1997年   11篇
  1996年   4篇
  1995年   4篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   6篇
  1990年   3篇
  1989年   2篇
  1987年   1篇
  1984年   1篇
  1978年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有863条查询结果,搜索用时 187 毫秒
121.
1957-2009年黄土高原地区风速变化趋势   总被引:2,自引:0,他引:2  
用88个气象站1957-2009年的月平均风速和最大风速日值资料,采用距平累积法、 5 a趋势滑动法、 Mann-Kendall趋势检验法等分析了黄土高原地区风速的变化趋势及其空间分异等特征。结果表明:①黄土高原地区1957-2009年多年平均风速为2.36 m/s,水蚀区、 水蚀风蚀交错区和风蚀区年均风速分别为2.36、 2.17、 2.60 m/s,年际变化倾向率分别为-0.008 4、 -0.009 4和-0.018 8 m·s-1·a-1,并均通过了0.001的极显著性检验。3个区域均是冬、 春季的平均风速对全年趋势演变贡献率较大,年均风速也均在1981年发生偏强转为偏弱的跃变,20世纪70年代以后平均风速逐渐减小。②黄土高原平均风速减少的主要原因是最大风速为5级或5级以上的发生日数减少。大风频率从1970年代至2000年代呈显著减少趋势,风蚀区减少幅度最大,减少了10%以上,水蚀风蚀交错区减少1%~5%,到2000年代,大多数站点的大风频率均降低为<2%。③水蚀风蚀交错区和风蚀区年均大风日数较多,而水蚀区和黄土高原西部地区年均大风日数较少。根据大风年均发生日数,将大风天气划分为大风天气较少区(年均大风日数<10 d)、 较多区(10~50 d)、 多发区(50~100 d)和频发区(>100 d)。大风较多区在黄土高原地区分布最广,其次是较少区,无频发区。70年代至90年代,风蚀区和水蚀风蚀交错区的站点大多为大风较多区,其中70年代中宁和包头为大风多发区;2000年代以后,大部分地区转为大风较少区。  相似文献   
122.
基于中国风能资源专业观测网的近地层风切变日变化特征   总被引:1,自引:0,他引:1  
以中国风能资源专业观测网2009年5至10月10~120 m的梯度风观测数据分析了全国近地层风切变特征,结果表明:①风切变总体呈现规律性变化趋势,即:日出前和日落后切变指数较大,随着近地层温度升高,切变指数逐渐下降,近地层温度达到最高时,切变指数达到最低值,后随着日落、地面温度下降,切变指数逐渐上升,直到次日日出、日落周期;②因局地海(湖)陆分布的差异以及下垫面粗糙程度的不同,切变指数在各地的变化可归纳为如下几种类型:典型陆地型、海陆效应差异型、湖(河)陆效应差异型、特殊地形(峡谷)型、切变指数偏大型和特殊型;③从不同梯度间的风切变特征来看,低层(30 m附近)较为明显,而中高层(50 m和70 m)较小,说明30 m高度为我国近地层风速变化较为明显的层次。该研究资料序列短,可能在反映全国近地层风切变特征的普适性方面还存在一定的不足,但仍可作为我国风能资源丰富区近地层不同梯度间风切变分布和变化特征的重要参考,期望通过该研究的开展为风电场的布设及近地面层风能资源的利用提供技术依据。  相似文献   
123.
从分析建筑环境中的风能特点出发,阐述了建筑环境中风能利用的可能性,介绍了建筑环境中风能利用的主要方式为自然通风排气和风力发电。针对风力发电形式,从建筑风环境的模拟、建筑强化和集结风能的性能研究、适宜建筑环境的风力机研究以及建筑环境中的风力发电效益评估四个方面,系统总结了建筑环境中风能利用的研究现状及应用实例。在此基础上,提出了若干有待进一步研究解决的问题,为建筑环境中风能利用技术的推广应用提供参考。  相似文献   
124.
风向对街道峡谷内污染物扩散的影响   总被引:2,自引:1,他引:1       下载免费PDF全文
采用Fluent软件,选用RNG k-ε湍流模型,对长高比为5的街道峡谷(简称街谷)在0°~90°风向下流场和污染物浓度场进行了数值模拟. 结果表明: 0°~75°风向时,街谷内流场呈明显的三维特性,90°风向时,流动表现出中长街谷的二维特点;风向对街谷内壁面污染物浓度的分布有显著影响,90°风向下的街谷壁面浓度最大,其次是45°风向,其余风向下的相对较小,污染物浓度的计算值与风洞试验值在趋势上吻合较好;壁面污染物浓度的分布由街谷内长度方向漩涡、来流冲角产生的进口回流及沿长度方向的流动所决定,壁面浓度的分布差异均可从附近的流场获得解释. 街道峡谷内长度方向的漩涡模拟过强会导致地面附近污染物浓度的计算值偏离试验值.   相似文献   
125.
为探究分岔隧道火灾火源位置对临界风速的影响规律,使用数值模拟方法对火源位于分岔隧道分岔口前和分岔口后的火灾场景下的临界风速进行研究.研究结果表明:火源位于分岔口后的主隧道时,临界风速明显大于火源位于分岔口前的临界风速;在一定范围热释放速率下,分岔隧道临界风速与热释放速率的1/3次方成正比;在分岔隧道模型中,相同热释放速...  相似文献   
126.
复合绝缘子是超高压输电线路中的关键设备之一,确保其可靠运行是维护电网安全的前提。新疆乌鲁木齐至吐鲁番750kV输电线路途径"三十里风区",当地10米高度处最高设计风速为42m/s,这对复合绝缘子的长期运行是一个巨大挑战。强风下的绝缘子伞裙摆动导致其根部材料疲劳,进一步产生微观裂纹,最终导致绝缘子撕裂故障。本文通过气候环境调研,分析了当地气候环境特征;通过故障分析,初步探明乐儿复合绝缘子伞裙撕裂过程;通过风洞实验研究,得到了伞裙在流体中的动态现象。通过以上分析,对于这项特殊微气候环境下的外绝缘典型故障,本研究探明强风下伞裙动态过程,并在伞裙故障产生原因方面进行一定探索,为最终解决该问题提供了有力的技术参考。  相似文献   
127.
系统检索了2000至2012年年底风电行业事故情况,从事故总数、死亡人数及事故类型展开分析。结果表明,风电行业风险具有自身特征,事故一直呈现上升趋势,其中叶片损坏、火灾、结构毁损、抛冰、交通运输、环境破坏等事故比较突出,对从业人员和公众构成威胁。我国风电行业正处于快速扩张期,内在风险较高,需引起行业主管部门和企业的高度重视,开展全产业链系统安全研究和管理手段创建,开发本质安全型工艺和设备,强化施工及运营安全管理。分析结果对指导风电行业安全管理决策和提升企业安全管理水平具有现实意义。  相似文献   
128.
近25年雅鲁藏布江中游蒸发皿蒸发量及其影响因素的变化   总被引:3,自引:0,他引:3  
采用气候倾向率方法,对西藏雅鲁藏布江(下称"雅江")中游1981~2005年14个气象站年、季小型蒸发皿蒸发量及其影响气候因子的变化趋势进行了分析。结果表明:近25年西藏雅江中游年蒸发皿蒸发量在流域绝大部分站点均呈现显著的减少趋势,平均减幅为109.92mm,以夏季减少趋势最明显。影响蒸发皿蒸发量的主要气候因子日照时数、平均风速呈现显著下降趋势,平均相对湿度、降水量表现为显著增加,平均气温显著升高,平均最低气温的升温速率(0.52℃/10a)明显比平均最高气温的升温速率(0.23℃/10a)大,导致气温日较差减少(-0.29℃/10a)。因此,雅江中游年日照时数和平均风速的显著下降,以及年平均相对湿度的明显增加可能是年蒸发皿蒸发量显著下降的主要原因,平均气温日较差的显著减小和降水量的增加在蒸发量减少趋势中的作用也不可忽视。  相似文献   
129.
In this paper, the assessment and modelling of alternative renewable energy systems for Masirah Island is considered. The hybrid system that is simulated comprises various combinations of wind turbines and/or photovoltaic (PV) supplemented with diesel generators and short-term battery storage. It was found from the analysis that the PV–wind–diesel hybrid system, with battery unit, has the lowest cost values as compared to solar-only or wind–diesel hybrid systems. Furthermore, the study illustrates that for a given hybrid system the presence of battery storage will reduce diesel consumption. The decrease in carbon emission, the percentage of fuel savings, the cost of energy production and the effect of wind and PV penetration are also addressed in this paper. The PV–wind–diesel hybrid option is techno-economically viable for the electrification of the Masirah Island.  相似文献   
130.
ABSTRACT

Demand of electrical energy is exponentially increasing causing environmental problems due to extensive use of fossil fuels. Hence, research has been promoted in renewable energy technologies to mitigate environmental pollution. Indian subcontinent is rich in renewable energy sources (RES). This paper describes potential of RES and region-wise installed capacity in India. Estimated potential of RES is 57 GW which is targeted to be 175 GW by 2022. A logical framework for our future research work has been presented. This includes performance optimisation of solar pumping system and reliability assessments of the designed system using reliability indices.

Abbreviation: RES: Renewable energy resources; SHP: small hydro plants; GOI: Government of India; MNRE: Ministry of New and Renewable Energy; LHP: large hydropower; BCM: billion cubic metres; PEC: per-capita energy consumption; JNNSM: Jawaharlal Nehru National Solar Mission; DNI: direct normal irradiance; SPV: solar photovoltaic; UMPP: ultra mega green solar power project; GIS: geographic information systems; WMS: wind monitoring stations; MPWL: Madhya Pradesh windfarms Ltd.; MIB: mat river basin; SWAT: Soil and Water Assessment Tool; ROR: run of river; SMS: short message service; CDM: clean development mechanism; NIOT: national institute of ocean technology; LOLP: loss of load probability; CSO: Central Statistics Office; CEA: Central Electricity Authority; TERI: The Energy and Resources Institute; WPI: Wind Power India; IEA: International Energy Agency; EAI: Energy Alternatives India; BKP: Biomass Knowledge Portal; IRENA: International Renewable Energy Agency; GAIN: Global Agricultural Information Network; NITI: National Institution for Transforming India; NIWE: National Institute of Wind Energy; UP: Uttar Pradesh; J&K: Jammu and Kashmir; HP: Himachal Pradesh; NR: northern region; MP: Madhya Pradesh; WR: western region; TN: Tamil Nadu; AP: Andhra Pradesh; SR: southern region; ER: eastern region; NER: north eastern region; A&N: Andaman & Nicobar  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号