首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1066篇
  免费   103篇
  国内免费   234篇
安全科学   121篇
废物处理   9篇
环保管理   169篇
综合类   643篇
基础理论   140篇
污染及防治   98篇
评价与监测   47篇
社会与环境   119篇
灾害及防治   57篇
  2024年   5篇
  2023年   26篇
  2022年   50篇
  2021年   38篇
  2020年   34篇
  2019年   34篇
  2018年   35篇
  2017年   49篇
  2016年   52篇
  2015年   56篇
  2014年   42篇
  2013年   54篇
  2012年   93篇
  2011年   90篇
  2010年   61篇
  2009年   59篇
  2008年   59篇
  2007年   62篇
  2006年   73篇
  2005年   61篇
  2004年   51篇
  2003年   50篇
  2002年   35篇
  2001年   24篇
  2000年   35篇
  1999年   24篇
  1998年   20篇
  1997年   26篇
  1996年   20篇
  1995年   12篇
  1994年   10篇
  1993年   12篇
  1992年   11篇
  1991年   8篇
  1990年   6篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   3篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1403条查询结果,搜索用时 15 毫秒
921.
河岸带生态学研究进展与展望   总被引:5,自引:0,他引:5  
河岸带是河流—陆地生态系统之间进行物质、能量、信息交换的重要生态过渡区,具有独特的生态系统结构和服务功能,近年来成为国内外生态学和环境科学的研究热点之一。在阐述河岸带结构与功能基础上,分析了河岸带的影响因素与其退化机制,退化河岸带的生态恢复理论、基本原则、生态重建技术和发展方向。认为影响河岸带结构与功能的主要因素可归纳为水文与地貌过程、植被与人为干扰4个方面;识别影响河岸带生态系统的生物和物理作用过程及其退化成因是关键,指出了生态恢复应遵循的原则与宜采用的生态重建技术。在此基础上,提出河岸带生态恢复应在景观或流域尺度上借助“3S”技术和多学科协作从微观、中观和宏观不同层次开展研究,甄别生态退化的主导因素,采用植被重建与水文调控技术尽可能恢复与重建原有自然景观。从系统生态学与景观生态学的角度,提出河岸带生态学未来研究方向。建议今后应加强对河岸带生态系统结构、生态过程与功能及生态重建技术的研究成果进行系统整合,建立能够预测河岸带结构与功能动态的数量模型和评价体系,为实现河岸带重建与高效管理提供科学指导。  相似文献   
922.
以土地利用转移矩阵为基础,通过计算土地利用净变化量、交换变化量和绝对变化总量,对泰州市及生态红线区2010—2014年土地利用空间变化特征做分析。结果显示:耕地转化为建设用地及水域湿地景观为主要变化趋势,生态红线区域内土地开发利用受到较严格的限制,保护措施成效较好,其自然生态环境得到持续的修复和改善。  相似文献   
923.
为了解海州湾潮间带大型底栖动物群落结构,分析人类养殖活动对其影响,于2012-2017年对该区域大型底栖动物进行调查。结果表明:6年间共发现120种大型底栖动物,依据种类组成进行聚类分析可分为4组;调查中总平均丰度为3 495.9 ind./m2,范围为506.7~17 864.0 ind./m2;总平均生物量为197.26 g/m2,范围为1.58~489.17 g/m2。光滑河蓝蛤(Potamocorbula laevis)为第一优势种,其繁殖盛期在每年9-10月。调查期间生物多样性整体呈下降趋势,人类的养殖活动主导着海州湾潮间带大型底栖动物群落结构的变化。  相似文献   
924.
The SO2 emission sources of the Chengdu-Chongqing economic zone were divided into 556 emissions units according to four different categories, which are city, industry, point sources, and area sources. The CALPUFF model was used to calculate the contribution of each unit, and consequently obtain an influence-transferring matrix. To ensure that the SO2 concentrations of 46 cities and counties in the Chengdu-Chongqing economic zone meet air quality standards, an emission optimization model was developed to calculate optimal emissions of each emission unit under different development scenarios. The result showed the optimal emissions of SO2 by different provinces and industries. To achieve the target of restricting and optimizing development, corresponding planning programs were developed for every district.  相似文献   
925.
Natural factors and human modifications contribute to the estimated annual loss of 10,200 ha of coastal land in the Mississippi River Deltaic Plain Region of south Louisiana. This paper combines information on regional geology and human-induced habitat alterations to evaluate the relative importance of human and natural factors to marsh loss. Data on marsh area and habitat type for 139 7.5-min quadrangles were calculated from maps based on aerial photographs from 1955/56 and 1978, and data on regional geology obtained from published maps were used to construct multivariate model relating initial marsh area, change in urban and agricultural area, change in canal and spoil area, canal area in 1978, depth of sediment overlying the Prairie terrace, and subdelta age to marsh loss. The model indicated that between 25.0% and 39.0% of the marsh loss that occurred during the 23-year period was related to canal and spoil construction, and between 9.5% and 12.7% was related to urban and agricultural development. These are minimal estimates of loss because they do not include many secondary effects (for example, canal orientation, saltwater intrusion, and eutrophication) that can also result in indirect loss. Depth of sediment, initial marsh area, delta lobe age by 1978 canal and spoil area interaction, and indirect effects not included in the model accounted for remaining marsh loss.  相似文献   
926.
Wind-driven waves are important in structuring intertidal and shallow subtidal assemblages of macrobenthic infauna. In the sheltered waters of estuaries, boat-generated waves (wash) may play a similar role because they are typically of a similar amplitude or larger than wind-driven waves. However, few studies have attempted to determine the role of wash in structuring assemblages. Consequently, strategies for managing boating focus around minimization of bank erosion. Along the Parramatta River (Sydney, Australia), no-wash zones have been established and mangroves planted to minimize the erosion of riverbanks and collapse of seawalls purportedly caused by 35-m-long RiverCat ferries. Although intended to also reduce the ecological impacts of wash, it is unclear whether these strategies achieve this goal. Unvegetated and vegetated (among the pneumatophores of mangroves) sediments were sampled in wash and no-wash zones along the Parramatta River to assess the effectiveness of no-wash zones and vegetation of river banks in reducing the ecological impacts of wash. Specifically, it was hypothesized that (1) assemblages of intertidal macrobenthic infauna would differ between wash and no-wash zones of the Parramatta River and (2) these differences would be greater in unvegetated than in vegetated habitat. As predicted, assemblages of macrobenthic infauna differed between the wash and no-wash zones. Capitellids, nereids, and spionids were more abundant in the no-wash zone. Contrary to the hypothesis, differences were no greater in the unvegetated habitat than in the vegetated habitat. The results suggest an impact of wash on assemblages of macrobenthic infauana and a role for no-wash zones in minimizing the effects of this disturbance.  相似文献   
927.
Non-point-source pollution of surface and groundwater is a prominent environmental issue in rural catchments, with major consequences on water supply and aquatic ecosystem quality. Among surface-water protection measures, environmental or landscape management policies support the implementation and the management of buffer zones. Although a great number of studies have focused on buffer zones, quantification of the buffer effect is still a recurring question.The purpose of this article is a critical review of the assessment of buffer-zone functioning. Our objective is to provide land planners and managers with a set of variables to assess the limits and possibilities for quantifying buffer impact at the catchment scale. We first consider the scale of the local landscape feature. The most commonly used empirical method for assessing buffers is to calculate water/nutrient budgets from inflow–outflow monitoring at the level of landscape structures. We show that several other parameters apart from mean depletion of flux can be used to describe buffer functions. Such parameters include variability, with major implication for water management. We develop a theoretical framework to clarify the assessment of the buffer effect and propose a systematic analysis taking account of temporal variability. Second, we review the current assessment of buffer effects at the catchment scale according to the theoretical framework established at the local scale. Finally, we stress the limits of direct empirical assessment at the catchment scale and, in particular, we emphasize the hierarchy in hydrological processes involved at the catchment scale: The landscape feature function is constrained by other factors (climate and geology) that are of importance at a broader spatial and temporal scale.Published on line  相似文献   
928.
In this paper, following a methodology developed within the "Arctic Risk" Project of the Nordic Arctic Research Programme, several probabilistic indicators to evaluate the risk site possible impact on the geographical regions, territories, countries, counties, cities, etc., due to atmospheric transport from the risk site region were suggested. These indicators-maximum possible impact zone, maximum reaching distance, and typical transport time-were constructed by applying statistical methods and using a dataset of isentropic trajectories originated over the selected nuclear risk site (Ignalina nuclear power plant, Lithuania) during 1991-1996. For this site, the areas enclosed by isolines of the maximum possible impact zone and maximum reaching distance indicators are equal to 42 x 10(4) and 703 x 10(4) km(2), respectively. The maximum possible impact zone's boundaries are more extended in the southeast sector from the site and include, in particular, Latvia, Lithuania, Belarus, and several western regions of Russia. The maximum reaching distance's boundaries are twice more extended in the eastern direction from the site (reaching the Caspian Sea) compared with the western direction. The typical transport time to reach the southern territories of Sweden and Finland, northern regions of Ukraine, and northeast of Poland is 1 day. During this time, the atmospheric transport could typically occur over the Baltic States, Belarus, and western border regions of Russia, and central aquatoria of the Baltic Sea. Detailed analysis of temporal patterns for these indicators showed importance of the seasonal variability.  相似文献   
929.
Abstract: The Riparian Ecosystem Management Model (REMM) was developed by the U.S. Department of Agriculture‐Agriculture Research Service (USDA‐ARS) and its cooperators to design and evaluate the efficiency of riparian buffer ecosystems for nonpoint source pollution reduction. REMM requires numerous inputs to simulate water movement, sediment transport, and nutrient cycling in the buffer system. In order to identify critical model inputs and their uncertainties, a univariate sensitivity analysis was conducted for nine REMM output variables. The magnitude of each input parameter was changed from ?50% to +50% from the baseline data in 12 intervals or, in some cases, the complete range of an input was tested. Baseline model inputs for the sensitivity analysis were taken from Gibbs Farm, Georgia, where REMM was tested using a 5‐year field dataset. Results of the sensitivity analysis indicate that REMM responses were most sensitive to weather inputs, with minimum daily temperature having the greatest impact on the nitrogen‐related outputs. For example, the 100% change (?50% to +50%) in minimum daily temperature input values yielded a 164.4% change in total nitrogen (N), a 109.3% change in total nitrate (NO3), and a 127.1% change in denitrification. REMM was most sensitive to precipitation with regard to total flow leaving the riparian vegetative buffer zone (199.8%) and sediment yield (138.2%). Deep seepage (12.2%), volumetric water content (24.8%), and pore size index (6.5%) in the buffer soil profile were the most influential inputs for the output water movement. Sediment yield was most sensitive to Manning’s coefficient (46.6%), bare soil percent (40.7%), and soil permeability (6.1%). For vegetation, specific leaf area, growing degree day coefficients, and maximum root depth influenced the nitrogen related outputs. Overall results suggest that because of the high sensitivity to weather parameters, on‐site weather data is needed for model calibration and validation. The model’s relatively low sensitivity to vegetation parameters also appears to support the use of regional vegetation datasets that would simplify model implementation without compromising results.  相似文献   
930.
民窿空区群级联失稳评价   总被引:2,自引:0,他引:2  
民窿空区群已构成了许多矿山安全生产的极大隐患。针对民窿空区群的特点,运用重整化群方法,从整体的角度对民窿空区群系统的稳定性问题进行了研究,得到了空区群变尺度级联失稳迭代函数。给出了判别空区群系统整体失稳的临界概率,将空区群系统失稳的复杂判别转化为单元失稳概率与临界概率大小的比较问题,同时给出了计算实例,以供参考。所建立的方法可以为大规模民窿空区群范围内的工程施工以及民窿所在矿山空区群整体稳定性评价提供参考,同时也为认识一般空区群系统的失稳机理开辟了一条新的途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号