首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
基础理论   2篇
  2010年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
A multistate mark-recapture (MSMR) model of the adult salmonid migration through the lower Columbia River and into the Snake River was developed, designed for radiotelemetry detections at dams and tributary mouths. The model focuses on upstream-directed travel, with states determined from observed fish movement patterns indicating directed upstream travel, downstream travel (fallback), and use of non-natal tributaries. The model was used to analyze telemetry data from 846 migrating adult spring-summer Chinook salmon (Oncorhynchus tshawytscha) tagged in 1996 at Bonneville Dam on the Columbia River. We used the model to test competing hypotheses regarding delayed effects of fallback at dams and visits to tributaries, and to define and estimate migration summary measures. Tagged fish had an average probability of 0.755 () of ending migration at a tributary or upstream of Lower Granite Dam on the Snake River, and a probability of 0.245 () of unaccountable loss (i.e., mortality or mainstem spawning) between the release site downstream of Bonneville Dam and Lower Granite Dam. The highest probability of unaccountable loss (0.092; ) was in the reach between Bonneville Dam and The Dalles Dam. Study fish used the tributaries primarily as exits from the hydrosystem, and visits to non-natal tributaries had no significant effect on subsequent movement upriver (P = 0.4245). However, fallback behavior had a small effect on subsequent tributary entry and exit (P = 0.0530), with fish using tributaries as resting areas after reascending Bonneville Dam after fallback. The spatial MSMR model developed here can be adapted to address additional questions about the interaction of migrating organisms with their environment, or for the study of migrations in other river systems.  相似文献   
2.
Models that predict distribution are now widely used to understand the patterns and processes of plant and animal occurrence as well as to guide conservation and management of rare or threatened species. Application of these methods has led to corresponding studies evaluating the sensitivity of model performance to requisite data and other factors that may lead to imprecise or false inferences. We expand upon these works by providing a relative measure of the sensitivity of model parameters and prediction to common sources of error, bias, and variability. We used a one-at-a-time sample design and GPS location data for woodland caribou (Rangifer tarandus caribou) to assess one common species-distribution model: a resource selection function. Our measures of sensitivity included change in coefficient values, prediction success, and the area of mapped habitats following the systematic introduction of geographic error and bias in occurrence data, thematic misclassification of resource maps, and variation in model design. Results suggested that error, bias and model variation have a large impact on the direct interpretation of coefficients. Prediction success and definition of important habitats were less responsive to the perturbations we introduced to the baseline model. Model coefficients, prediction success, and area of ranked habitats were most sensitive to positional error in species locations followed by sampling bias, misclassification of resources, and variation in model design. We recommend that researchers report, and practitioners consider, levels of error and bias introduced to predictive species-distribution models. Formal sensitivity and uncertainty analyses are the most effective means for evaluating and focusing improvements on input data and considering the range of values possible from imperfect models.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号