排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
Matthew J. Selinske Sarah A. Bekessy William L. Geary Richard Faulkner Fern Hames Charlotte Fletcher Zoe E. Squires Georgia E. Garrard 《Conservation biology》2022,36(3):e13845
Biodiversity loss is driven by human behavior, but there is uncertainty about the effectiveness of behavior-change programs in delivering benefits to biodiversity. To demonstrate their value, the biodiversity benefits and cost-effectiveness of behavior changes that directly or indirectly affect biodiversity need to be quantified. We adapted a structured decision-making prioritization tool to determine the potential biodiversity benefits of behavior changes. As a case study, we examined two hypothetical behavior-change programs––wildlife gardening and cat containment––by asking experts to consider the behaviors associated with these programs that directly and indirectly affect biodiversity. We assessed benefits to southern brown bandicoot (Isoodon obesulus) and superb fairy-wren (Malurus cyaneus) by eliciting from experts estimates of the probability of each species persisting in the landscape given a range of behavior-change scenarios in which uptake of the behaviors varied. We then compared these estimates to a business-as-usual scenario to determine the relative biodiversity benefit and cost-effectiveness of each scenario. Experts projected that the behavior-change programs would benefit biodiversity and that benefits would rise with increasing uptake of the target behaviors. Biodiversity benefits were also predicted to accrue through indirect behaviors, although experts disagreed about the magnitude of additional benefit provided. Scenarios that combined the two behavior-change programs were estimated to provide the greatest benefits to species and be most cost-effective. Our method could be used in other contexts and potentially at different scales and advances the use of prioritization tools to guide conservation behavior-change programs. 相似文献
2.
Juan Tao Chengzhi Ding Jinnan Chen Liuyong Ding Sébastien Brosse Jani Heino Virgilio Hermoso Ruidong Wu Ziwang Wang Jiaxin Hu Rongxiao Che Xiaowei Jin Songhao Ji Dekui He 《Conservation biology》2023,37(3):e14036
The lack of high-resolution distribution maps for freshwater species across large extents fundamentally challenges biodiversity conservation worldwide. We devised a simple framework to delineate the distributions of freshwater fishes in a high-resolution drainage map based on stacked species distribution models and expert information. We applied this framework to the entire Chinese freshwater fish fauna (>1600 species) to examine high-resolution biodiversity patterns and reveal potential conflicts between freshwater biodiversity and anthropogenic disturbances. The correlations between spatial patterns of biodiversity facets (species richness, endemicity, and phylogenetic diversity) were all significant (r = 0.43–0.98, p < 0.001). Areas with high values of different biodiversity facets overlapped with anthropogenic disturbances. Existing protected areas (PAs), covering 22% of China's territory, protected 25–29% of fish habitats, 16–23% of species, and 30–31% of priority conservation areas. Moreover, 6–21% of the species were completely unprotected. These results suggest the need for extending the network of PAs to ensure the conservation of China's freshwater fishes and the goods and services they provide. Specifically, middle to low reaches of large rivers and their associated lakes from northeast to southwest China hosted the most diverse species assemblages and thus should be the target of future expansions of the network of PAs. More generally, our framework, which can be used to draw high-resolution freshwater biodiversity maps combining species occurrence data and expert knowledge on species distribution, provides an efficient way to design PAs regardless of the ecosystem, taxonomic group, or region considered. 相似文献
3.
Eliciting expert knowledge in conservation science 总被引:2,自引:0,他引:2
Martin TG Burgman MA Fidler F Kuhnert PM Low-Choy S McBride M Mengersen K 《Conservation biology》2012,26(1):29-38
Expert knowledge is used widely in the science and practice of conservation because of the complexity of problems, relative lack of data, and the imminent nature of many conservation decisions. Expert knowledge is substantive information on a particular topic that is not widely known by others. An expert is someone who holds this knowledge and who is often deferred to in its interpretation. We refer to predictions by experts of what may happen in a particular context as expert judgments. In general, an expert-elicitation approach consists of five steps: deciding how information will be used, determining what to elicit, designing the elicitation process, performing the elicitation, and translating the elicited information into quantitative statements that can be used in a model or directly to make decisions. This last step is known as encoding. Some of the considerations in eliciting expert knowledge include determining how to work with multiple experts and how to combine multiple judgments, minimizing bias in the elicited information, and verifying the accuracy of expert information. We highlight structured elicitation techniques that, if adopted, will improve the accuracy and information content of expert judgment and ensure uncertainty is captured accurately. We suggest four aspects of an expert elicitation exercise be examined to determine its comprehensiveness and effectiveness: study design and context, elicitation design, elicitation method, and elicitation output. Just as the reliability of empirical data depends on the rigor with which it was acquired so too does that of expert knowledge. 相似文献
4.
Jorge Galindo-González; 《Conservation biology》2024,38(3):e14232
Circumstances that precipitate interactions among species that have never interacted during their evolutionary histories create ideal conditions for the generation of zoonoses. Zoonotic diseases have caused some of the most devastating epidemics in human history. Contact among species that come from different ecosystems or regions creates the risk of zoonoses. In certain situations, humans are generating and promoting conditions that contribute to the creation of infectious diseases and zoonoses. These conditions lead to interactions between wildlife species that have hitherto not interacted under normal circumstances. I call for recognition of the zoonotic potential that novel and unwanted interactions have; identification of these new interactions that are occurring among wild animals, domestic animals, and humans; and efforts to stop these kinds of interactions because they can give rise to zoonotic outbreaks. Live animal markets, the exotic pet trade, illegal wildlife trade, human use and consumption of wild animals, invasive non-native species, releasing of exotic pets, and human encroachment in natural areas are among the activities that cause the most interactions among wild species, domestic species, and humans. These activities should not occur and must be controlled efficiently to prevent future epidemic zoonoses. Society must develop a keen ability to identify these unnatural interactions and prevent them. Controlling these interactions and efficiently addressing their causal factors will benefit human health and, in some cases, lead to positive environmental, ethical, and socioeconomic outcomes. Until these actions are taken, humanity will face future zoonoses and zoonotic pandemic. 相似文献
5.
Tovah Siegel;Ainhoa Magrach;William F. Laurance;David Luther; 《Conservation biology》2024,38(3):e14206
Forest fragmentation is a grave threat to biodiversity. Forests are becoming increasingly fragmented with more than 70% now < 1 km from forest edge. Although much is known about the effects of forest fragmentation on individual species, much less is understood about its effects on species interactions (i.e., mutualisms, antagonisms, etc.). In 2014, a previous meta-analysis assessed the impacts of forest fragmentation on different species interactions, across 82 studies. We pooled the previous data with data published in the last 10 years (combined total 104 studies and 168 effect sizes). We compared the new set of publications (22 studies and 32 effect sizes) with the old set to evaluate potential changes in species interactions over time given the global increase in fragmentation rates. Mutualisms were more negatively affected by forest fragmentation than antagonisms (p < 0.0001). Edge effects, fragment size, and degradation negatively affected mutualisms, but not antagonisms, a different finding from the original meta-analysis. Parasitic interactions increased as fragment size decreased (p < 0.0001)—an intriguing result at variance with earlier studies. New publications showed a more negative mean effect size of forest fragmentation on mutualisms than old publications. Although research is still limited for some interactions, we identified an important scientific trend: current research tends to focus on antagonisms. We concluded that forest fragmentation disrupts important species interactions and that this disruption has increased over time. 相似文献
6.
JANINE BOLLIGER THOMAS C. EDWARDS JR. STEFAN EGGENBERG SASCHA ISMAIL IRMI SEIDL FELIX KIENAST 《Conservation biology》2011,25(3):567-576
Abstract: Abandonment of agricultural land has resulted in forest regeneration in species‐rich dry grasslands across European mountain regions and threatens conservation efforts in this vegetation type. To support national conservation strategies, we used a site‐selection algorithm (MARXAN) to find optimum sets of floristic regions (reporting units) that contain grasslands of high conservation priority. We sought optimum sets that would accommodate 136 important dry‐grassland species and that would minimize forest regeneration and costs of management needed to forestall predicted forest regeneration. We did not consider other conservation elements of dry grasslands, such as animal species richness, cultural heritage, and changes due to climate change. Optimal sets that included 95–100% of the dry grassland species encompassed an average of 56–59 floristic regions (standard deviation, SD 5). This is about 15% of approximately 400 floristic regions that contain dry‐grassland sites and translates to 4800–5300 ha of dry grassland out of a total of approximately 23,000 ha for the entire study area. Projected costs to manage the grasslands in these optimum sets ranged from CHF (Swiss francs) 5.2 to 6.0 million/year. This is only 15–20% of the current total estimated cost of approximately CHF30–45 million/year required if all dry grasslands were to be protected. The grasslands of the optimal sets may be viewed as core sites in a national conservation strategy. 相似文献
7.
Elizabeth J. Green Graeme M. Buchanan Stuart H. M. Butchart Georgina M. Chandler Neil D. Burgess Samantha L. L. Hill Richard D. Gregory 《Conservation biology》2019,33(6):1360-1369
To inform governmental discussions on the nature of a revised Strategic Plan for Biodiversity of the Convention on Biological Diversity (CBD), we reviewed the relevant literature and assessed the framing of the 20 Aichi Biodiversity Targets in the current strategic plan. We asked international experts from nongovernmental organizations, academia, government agencies, international organizations, research institutes, and the CBD to score the Aichi Targets and their constituent elements against a set of specific, measurable, ambitious, realistic, unambiguous, scalable, and comprehensive criteria (SMART based, excluding time bound because all targets are bound to 2015 or 2020). We then investigated the relationship between these expert scores and reported progress toward the target elements by using the findings from 2 global progress assessments (Global Biodiversity Outlook and the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services). We analyzed the data with ordinal logistic regressions. We found significant positive relationships (p < 0.05) between progress and the extent to which the target elements were perceived to be measurable, realistic, unambiguous, and scalable. There was some evidence of a relationship between progress and specificity of the target elements, but no relationship between progress and ambition. We are the first to show associations between progress and the extent to which the Aichi Targets meet certain SMART criteria. As negotiations around the post-2020 biodiversity framework proceed, decision makers should strive to ensure that new or revised targets are effectively structured and clearly worded to allow the translation of targets into actionable policies that can be successfully implemented nationally, regionally, and globally. 相似文献
8.
Sylvaine Giakoumi Benjamin S. Halpern Loïc N. Michel Sylvie Gobert Maria Sini Charles‐François Boudouresque Maria‐Cristina Gambi Stelios Katsanevakis Pierre Lejeune Monica Montefalcone Gerard Pergent Christine Pergent‐Martini Pablo Sanchez‐Jerez Branko Velimirov Salvatrice Vizzini Arnaud Abadie Marta Coll Paolo Guidetti Fiorenza Micheli Hugh P. Possingham 《Conservation biology》2015,29(4):1228-1234
Effective ecosystem‐based management requires understanding ecosystem responses to multiple human threats, rather than focusing on single threats. To understand ecosystem responses to anthropogenic threats holistically, it is necessary to know how threats affect different components within ecosystems and ultimately alter ecosystem functioning. We used a case study of a Mediterranean seagrass (Posidonia oceanica) food web and expert knowledge elicitation in an application of the initial steps of a framework for assessment of cumulative human impacts on food webs. We produced a conceptual seagrass food web model, determined the main trophic relationships, identified the main threats to the food web components, and assessed the components’ vulnerability to those threats. Some threats had high (e.g., coastal infrastructure) or low impacts (e.g., agricultural runoff) on all food web components, whereas others (e.g., introduced carnivores) had very different impacts on each component. Partitioning the ecosystem into its components enabled us to identify threats previously overlooked and to reevaluate the importance of threats commonly perceived as major. By incorporating this understanding of system vulnerability with data on changes in the state of each threat (e.g., decreasing domestic pollution and increasing fishing) into a food web model, managers may be better able to estimate and predict cumulative human impacts on ecosystems and to prioritize conservation actions. 相似文献
9.
Amphibian decline has led to worldwide conservation efforts, including the identification and designation of sites for their protection. These sites could also play an important role in the conservation of other freshwater taxa. In 89 ponds in Switzerland, we assessed the effectiveness of amphibians as a surrogate for 4 taxonomic groups that occur in the same freshwater ecosystems as amphibians: dragonflies, aquatic beetles, aquatic gastropods, and aquatic plants. The ponds were all of high value for amphibian conservation. Cross‐taxon correlations were tested for species richness and conservation value, and Mantel tests were used to investigate community congruence. Species richness, conservation value, and community composition of amphibians were weakly congruent with these measures for the other taxonomic groups. Paired comparisons for the 5 groups considered showed that for each metric, amphibians had the lowest degree of congruence. Our results imply that site designation for amphibian conservation will not necessarily provide protection for freshwater biodiversity as a whole. To provide adequate protection for freshwater species, we recommend other taxonomic groups be considered in addition to amphibians in the prioritization and site designation process. 相似文献
10.
Stefano Canessa Sarah J. Converse Matt West Nick Clemann Graeme Gillespie Michael McFadden Aimee J. Silla Kirsten M. Parris Michael A. McCarthy 《Conservation biology》2016,30(3):599-609
Ex situ conservation strategies for threatened species often require long‐term commitment and financial investment to achieve management objectives. We present a framework that considers the decision to adopt ex situ management for a target species as the end point of several linked decisions. We used a decision tree to intuitively represent the logical sequence of decision making. The first decision is to identify the specific management actions most likely to achieve the fundamental objectives of the recovery plan, with or without the use of ex‐situ populations. Once this decision has been made, one decides whether to establish an ex situ population, accounting for the probability of success in the initial phase of the recovery plan, for example, the probability of successful breeding in captivity. Approaching these decisions in the reverse order (attempting to establish an ex situ population before its purpose is clearly defined) can lead to a poor allocation of resources, because it may restrict the range of available decisions in the second stage. We applied our decision framework to the recovery program for the threatened spotted tree frog (Litoria spenceri) of southeastern Australia. Across a range of possible management actions, only those including ex situ management were expected to provide >50% probability of the species’ persistence, but these actions cost more than use of in situ alternatives only. The expected benefits of ex situ actions were predicted to be offset by additional uncertainty and stochasticity associated with establishing and maintaining ex situ populations. Naïvely implementing ex situ conservation strategies can lead to inefficient management. Our framework may help managers explicitly evaluate objectives, management options, and the probability of success prior to establishing a captive colony of any given species. 相似文献