首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4203篇
  免费   390篇
  国内免费   1652篇
安全科学   258篇
废物处理   392篇
环保管理   424篇
综合类   2909篇
基础理论   981篇
污染及防治   932篇
评价与监测   210篇
社会与环境   96篇
灾害及防治   43篇
  2024年   10篇
  2023年   81篇
  2022年   104篇
  2021年   136篇
  2020年   148篇
  2019年   157篇
  2018年   144篇
  2017年   169篇
  2016年   207篇
  2015年   245篇
  2014年   257篇
  2013年   470篇
  2012年   397篇
  2011年   360篇
  2010年   269篇
  2009年   275篇
  2008年   250篇
  2007年   356篇
  2006年   326篇
  2005年   249篇
  2004年   200篇
  2003年   184篇
  2002年   175篇
  2001年   137篇
  2000年   140篇
  1999年   125篇
  1998年   130篇
  1997年   85篇
  1996年   73篇
  1995年   68篇
  1994年   59篇
  1993年   38篇
  1992年   46篇
  1991年   46篇
  1990年   22篇
  1989年   21篇
  1988年   17篇
  1987年   14篇
  1986年   5篇
  1985年   3篇
  1984年   9篇
  1983年   6篇
  1982年   7篇
  1981年   6篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1973年   2篇
  1972年   2篇
  1967年   1篇
排序方式: 共有6245条查询结果,搜索用时 36 毫秒
401.
Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973-2005, and both the spawner biomass and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated with the fish population model, and by the source of global climate data used by regional models. Knowledge of processes and biases could reduce these uncertainties.  相似文献   
402.
Havenhand JN 《Ambio》2012,41(6):637-644
Increasing partial pressure of atmospheric CO2 is causing ocean pH to fall—a process known as ‘ocean acidification’. Scenario modeling suggests that ocean acidification in the Baltic Sea may cause a ≤3 times increase in acidity (reduction of 0.2–0.4 pH units) by the year 2100. The responses of most Baltic Sea organisms to ocean acidification are poorly understood. Available data suggest that most species and ecologically important groups in the Baltic Sea food web (phytoplankton, zooplankton, macrozoobenthos, cod and sprat) will be robust to the expected changes in pH. These conclusions come from (mostly) single-species and single-factor studies. Determining the emergent effects of ocean acidification on the ecosystem from such studies is problematic, yet very few studies have used multiple stressors and/or multiple trophic levels. There is an urgent need for more data from Baltic Sea populations, particularly from environmentally diverse regions and from controlled mesocosm experiments. In the absence of such information it is difficult to envision the likely effects of future ocean acidification on Baltic Sea species and ecosystems.  相似文献   
403.
King C  Salem B 《Ambio》2012,41(5):490-503
Under increasing water scarcity, collective groundwater management is a global concern. This article presents an interdisciplinary analysis of this challenge drawing on a survey including 50 large and small farms and gardens in a village in an agricultural land reclamation area on the edge of the Western Desert of Egypt. Findings revealed that smallholders rely on a practice of shallow groundwater use, through which drainage water from adjacent irrigation areas is effectively recycled within the surface aquifer. Expanding agroindustrial activities in the surrounding area are socio-economically important, but by mining non-renewable water in the surrounding area, they set in motion a degradation process with social and ecological consequences for all users in the multi-layered aquifer system. Based on the findings of our investigation, we identify opportunities for local authorities to more systematically connect available environmental information sources and common pool resource management precedents, to counterbalance the degradation threat.  相似文献   
404.
405.
A global trend of a warming climate may seriously affect species dependent on sea ice. We investigated the impact of climate on the Baltic ringed seals (Phoca hispida botnica), using historical and future climatological time series. Availability of suitable breeding ice is known to affect pup survival. We used detailed information on how winter temperatures affect the extent of breeding ice and a climatological model (RCA3) to project the expected effects on the Baltic ringed seal population. The population comprises of three sub-populations, and our simulations suggest that all of them will experience severely hampered growth rates during the coming 90 years. The projected 30 730 seals at the end of the twenty-first century constitutes only 16 % of the historical population size, and thus reduced ice cover alone will severely limit their growth rate. This adds burden to a species already haunted by other anthropogenic impacts.  相似文献   
406.
Brassinosteroids (BRs) are involved in the amelioration of various biotic and abiotic stresses. With an aim to explore the role of BRs under heavy metal stress, plants of Brassica juncea L. were grown in pots. The plants were subjected to various concentrations of Nickel metal (0.0, 0.2, 0.4 and 0.6 mM) and harvested on 60th day in order to observe the expression of these hormones. The isolated BRs from the leaves of Brassica plants characterized by GC-MS include 24-Epibrassinolide (24-EBL), Castasterone, Dolicholide and Typhasterole. The effect of isolated 24-EBL was studied on Ni metal uptake and antioxidative defense system in 60 d old plants of Brassica. It was observed that 24-EBL significantly increased the activities of stress ameliorating enzymes and lowered the metal uptake in plants. This is the first report in B. juncea L. plants showing the expression of BRs under metal treatments and effect of the isolated 24-EBL on metal uptake and in oxidative stress management.  相似文献   
407.
Organic solvents, such as dimethylsulfoxide (DMSO) and methanol are widely used as vehicles to solubilise lipophilic test compounds in toxicity testing. However, the effects of such solvents upon innate detoxification processes in aquatic organisms are poorly understood. This study assessed the effect of solvent exposure upon cytochrome P450 (CYP)-mediated xenobiotic metabolism in Daphnia magna and zebrafish larvae (4 d post fertilisation). Adult D. magna were demonstrated to have a low, but detectable, metabolism of ethoxyresorufin in vivo and this activity was not modulated by pre-exposure to DMSO or methanol (24 h, up to 0.1% and 0.05% v/v, respectively). In contrast, the metabolism of ethoxyresorufin in zebrafish larvae was significantly reduced by both solvents (0.1% and 0.05% v/v, respectively) after 24 h of exposure. In zebrafish, these observed decreases in activity towards ethoxyresorufin were accompanied by decreased expression of a variety of genes coding for drug metabolising enzymes (corresponding to CYP1, CYP2, CYP3 and UDP-glucuronyl transferase [UGT] family enzymes), measured by quantitative PCR. Reduction of gene expression and CYP1 enzyme activities by methanol (0.05% v/v) in zebrafish larvae was partially reversed by co-exposure with Aroclor 1254 (100 μg L−1). Overall this study suggests that relatively low concentrations of organic solvents can impact upon the biotransformation of certain xenobiotics in zebrafish larvae, and that this warrants consideration when assessing compounds for metabolism and toxicity in this species.  相似文献   
408.
For several decades, perfluorooctane sulfonate (PFOS) has widely been used as a fluorinated surfactant in aqueous film forming foams used as hydrocarbon fuel fire extinguishers. Due to concerns regarding its environmental persistence and toxicological effects, PFOS has recently been replaced by novel fluorinated surfactants such as Forafac®1157, developed by the DuPont company. The major component of Forafac®1157 is a 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), and a link between the trade name and the exact chemical structure is presented here to the scientific community for the first time. In the present work, the structure of the 6:2 FTAB was elucidated by 1H, 13C and 19F nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. Moreover, its major metabolites from blue mussel (Mytilus edulis) and turbot (Scophthalmus maximus) and its photolytic transformation products were identified. Contrary to what has earlier been observed for PFOS, the 6:2 FTAB was extensively metabolized by blue mussel and turbot exposed to Forafac®1157. The major metabolite was a deacetylated betaine species, from which mono- and di-demethylated metabolites also were formed. Another abundant metabolite was the 6:2 fluorotelomer sulfonamide. In another experiment, Forafac®1157 was subjected to UV-light induced photolysis. The experimental conditions aimed to simulate Arctic conditions and the deacetylated species was again the primary transformation product of 6:2 FTAB. A 6:2 fluorotelomer sulfonamide was also formed along with a non-identified transformation product. The environmental presence of most of the metabolites and transformation products was qualitatively demonstrated by analysis of soil samples taken in close proximity to an airport fire training facility.  相似文献   
409.
Subcellular distribution and toxicity of cadmium in Potamogeton crispus L   总被引:2,自引:0,他引:2  
Xu Q  Min H  Cai S  Fu Y  Sha S  Xie K  Du K 《Chemosphere》2012,89(1):114-120
The submerged macrophyte Potamogeton crispus L. was subjected to varying doses of cadmium (0, 20, 40, 60 and 80 μM) for 7 d, and the plants were analyzed for subcellular distribution of Cd, accumulation of mineral nutrients, photosynthesis, oxidative stress, protein content, and ultrastructural distribution of calcium (Ca). Leaf fractionation by differential centrifugation indicated that 48-69% of Cd was accumulated in the cell wall. At all doses of Cd, the levels of Ca and B rose and the level of Mn fell; the levels of Fe, Mg, Zn, Cu, Mo, and P rose initially only to decline later. Exposure to Cd caused oxidative stress as evident by increased content of malondialdehyde and decreased contents of chlorophyll and protein. Photosynthetic efficiency, as indicated by the quenching of chlorophyll a fluorescence (Fv/Fm, Fo and Fm), decreased significantly, the extent of decrease being directly proportional to the concentration of Cd. Increased amounts of precipitates of calcium were noticed in the treated plants, located either outside the cell membrane or in chloroplasts, mitochondria, the nucleus, and the cytoplasm whereas control plants showed small deposits of the precipitates around surface of the vacuole membrane and in the intercellular space but rarely in the cytoplasm. Photosynthetic efficiency and oxidative stress could be used as indicators of physiological end-points in determining the extent of Cd phytotoxicity.  相似文献   
410.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号