首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   742篇
  免费   77篇
  国内免费   344篇
安全科学   75篇
废物处理   28篇
环保管理   50篇
综合类   631篇
基础理论   185篇
污染及防治   157篇
评价与监测   12篇
社会与环境   13篇
灾害及防治   12篇
  2024年   5篇
  2023年   31篇
  2022年   46篇
  2021年   45篇
  2020年   29篇
  2019年   38篇
  2018年   26篇
  2017年   51篇
  2016年   43篇
  2015年   53篇
  2014年   102篇
  2013年   54篇
  2012年   49篇
  2011年   59篇
  2010年   63篇
  2009年   73篇
  2008年   69篇
  2007年   45篇
  2006年   35篇
  2005年   31篇
  2004年   39篇
  2003年   25篇
  2002年   29篇
  2001年   15篇
  2000年   16篇
  1999年   14篇
  1998年   15篇
  1997年   13篇
  1996年   10篇
  1995年   8篇
  1994年   5篇
  1993年   10篇
  1992年   5篇
  1991年   3篇
  1990年   6篇
  1989年   3篇
排序方式: 共有1163条查询结果,搜索用时 15 毫秒
31.
为研究我国东北地区典型气候条件对采矿废石酸性排水的影响,以辽宁省本溪市红透山铜矿废石为研究对象,探讨了干-湿循环和冻-融循环作用对采矿废石风化产酸的影响。黄铁矿(FeS2)在废石中的平均质量分数为23.51%,是主要的产酸硫化矿物。利用自制淋溶试验设备开展了为期120 d(共计20次)的冻-融循环、干-湿循环及淋溶试验,对不同试验条件下铜矿废石淋溶液的pH值、酸度、电导率以及Ca2+、Mg2+、SO2-4、总Fe及Cu2+质量浓度进行了测试分析。结果表明,相对于干-湿循环作用而言,单纯的冻-融循环作用不会对废石的风化产酸产生明显影响。试验过程中冻-融循环作用下废石淋溶液的pH值基本维持在5左右,干-湿循环作用下废石淋溶液的pH值则保持在4.5左右。由于风化产酸程度较高,干-湿循环作用下黄铁矿风化所形成的总Fe、SO2-4质量浓度分别为冻-融循环下的8.5倍和1.6倍;Cu2+的质量浓度约为冻融循环条件下Cu2+质量浓度的5.2倍。冻-融循环及干-湿循环条件下,氧气及水分穿透黄铁矿外"包裹层"的时间分别为60 d和80 d。因此,与南方相对温暖湿润的气候类型相比,我国东北地区冰冻期长、丰水期短的气候类型可在一定程度上抑制废石风化产酸的形成。  相似文献   
32.
〗为确保下向进路采场高效安全回采,采用ABAQUS的损伤塑性模型对下向进路钢筋混凝土假顶进行稳定性分析,得到假顶的应力与位移分布规律,分别从假顶的应力分布、变形量对不同进路尺寸及假顶厚度的影响进行比较分析。结果表明,进路假顶产生的最大拉应力(089MPa)小于混凝土层的抗拉强度(127MPa);最大压应力(416 MPa)小于混凝土层的抗压强度(119MPa);假顶底部最易被拉裂位置为偏离假顶中央(05~1)m处;钢筋承载了大部分拉应力,受拉性能得到充分利用。在进路尺寸为3m×3m或者4m×3m时假顶厚度取06m,进路尺寸为4m×4m时假顶厚度取08m,假顶最大拉应力值均未超过混凝土的抗拉强度值,此时假顶较为稳定,便于进路维护与提高回采强度。研究结果对下向进路采场的安全生产提供技术保障。  相似文献   
33.
辽河流域工业行业污染减排潜力实证研究   总被引:3,自引:0,他引:3  
随着经济总量的持续增长,降低产污强度,从源头减少污染产生是促进污染减排的重要手段。基于2008年辽河流域工业行业环境统计数据,以COD,NH3-N两项指标为研究对象,识别出7类重点行业,其COD,NH3-N产生量分别占工业产生总量的77%、90%,排放量占工业总量的81%、77%。分析了重点行业的产污强度及末端去除率水平,表明工业行业产污强度高是工业污染严重的主要原因,发展清洁生产具有较大的减排潜力。设计工业行业发展清洁生产情景并测算出到2015年辽河工业的污染物排放情况,结果显示,通过适当限制重污染行业增长速度、重点降低产污强度、适当提高末端去除率,在流域工业行业产值年均增长率14.75%的情况下,2015年工业污染物排放量与2008年相比,COD削减45%-55%,NH3-N削减21%-33%。以此为流域工业污染防治"十二五"规划提供技术支持。  相似文献   
34.
味精废水处理酵母的选育   总被引:1,自引:0,他引:1  
由55株酵母选育出了2株耐酸性假丝酵母.摇瓶培养24h,味精废水pH从4.0回升至7.2,CODcr从45000mg/L降至31000mg/L,去除31%以上。得到生物量6.5g菌体/dL废水,干酵母粉蛋白含量49.4%。  相似文献   
35.
中温和高温厌氧生物产氢反应器连续运行的研究   总被引:2,自引:2,他引:2  
采用2个厌氧生物产氢反应器分别在中温(37℃)和高温(55℃)下连续运行.以河底沉积物接种,葡萄糖为基质,在CSTR中成功实现了连续中温厌氧产氢,最高产氢量达8.6L/(L·d),基质产氢摩尔比(H2/葡萄糖)为1.98.以厌氧产甲烷颗粒污泥接种,蔗糖为基质,在UASB反应器中成功实现了连续高温厌氧产氢过程,最高产氢量达6.8L/(L·d),基质产氢摩尔比(H2/蔗糖)为3.6.在高温UASB反应器中培养获得了灰白色的产氢颗粒污泥,平均粒径为0.8~1.2mm,沉速为30~40m/h,电镜观察发现其表层生长大量杆状细菌.对2种产氢污泥的总DNA进行提取和纯化,通过PCR扩增和DGGE分析,发现高温和中温厌氧产氢污泥中的大部分真细菌种类相同,但各自的优势菌种明显不同.  相似文献   
36.
微生物燃料电池(MFCs)是一种在处理废水的同时产生电能的新型装置,阳极作为产电微生物富集、电子产生和传递的区域对提高MFCs的性能具有至关重要的作用。以碳布负载的四氧化三钴多孔纳米片阵列(Co3O4/CC)作为阳极,探究了可调控的纳米片孔缺陷对MFCs产电性能的影响。结果表明:Co3O4/CC阳极的产电性能显著优于碳布,且正比于Co3O4纳米片的孔隙率;液固界面处的电荷传递电阻(Rct)由729.20 Ω降至43.48 Ω,所获得的最大功率密度由1275 mW·m−2增加至1547 mW·m−2。本研究开发了一种孔结构可控的金属氧化物负载碳布策略,所制备的高性能阳极材料可为MFCs的性能提升提供参考。  相似文献   
37.
将城镇污水处理厂的城市污泥与餐厨垃圾混合后,经厌氧消化处理后可产生能源气体氢气,从而达到资源化利用的目的.废铁屑是机械加工厂的固体废弃物,将其处理后可得到一种新型复合铁材料(FE/FEO).将城市污泥和餐厨垃圾预处理后按体积比1:1比例混合,分别等分放入2个反应器中,一个投加FE/FEO粉末作为为FE/FEO组,另一个...  相似文献   
38.
为了提高厌氧流化床微生物燃料电池(AFB-MFC)的性能,并为双室MFC寻找价廉、易得、无污染的阴极液,在曝气量16~24 L/h、温度(35±2)℃、回流量10.2 L/h、阴极底边距阴极室内底部17.3 cm、外电阻250 Ω、水力停留时间(HRT)14.0~14.9 h以及进水pH 7.81~8.37下,研究了阴极液及底物浓度对系统产电及废水处理性能的影响。结果表明,使用缓冲溶液、阳极室出水和自来水作阴极液时,自来水的产电性能最佳,阴极液种类不影响系统有机基质的去除。以自来水为阴极液时,阴极液pH及电导率随运行时间增加而增加,COD去除率为80.11%~89.29%,输出电压及功率密度开始随运行时间增加而增加,之后稳定在440~452 mV和48.40~51.08 mW/m2之间。增加底物浓度对COD去除率影响不大,而输出电压及功率密度随底物浓度增加而下降;底物COD浓度由3 307.09 mg/L增至9 520 mg/L时,COD去除率在85.77%~94.44%之间,输出电压及功率密度则分别由449 mV和50.40 mW/m2下降至406 mV和41.21 mW/m2。自来水作阴极液可避免二次污染及阴极液对阳极室微生物的影响,并得到高的产电能力。  相似文献   
39.
张广金  信欣  毛言  刘韵  陈梅 《环境工程学报》2012,6(5):1595-1598
将一株产絮酵母菌(编号B-02号)发酵后的废菌体制成生物吸附剂,研究该生物吸附剂对废水中Cd2+的生物吸附特性。结果表明:(1)pH值对Cd2+会产生较大的影响,偏酸性(pH=4~6)条件利于吸附;该吸附剂对Cd2+吸附速率较快,8~10 min就可达到吸附平衡;(2)吸附剂的吸附动力学符合二级动力学模型,吸附Cd2+的实验数据对Langmuir等温式的拟合情况良好,吸附剂吸附Cd2+的最大吸附量为70.752 mg/g。用0.5 mol/L HNO3对吸附Cd2+的酵母菌进行解吸,解吸率可达89.7%。  相似文献   
40.
通过单因素试验和正交试验确定了实验室保藏的壬基酚降解菌株沙雷氏菌(Serratiasp.LJ)的最佳产酶条件:以壬基酚、硫酸铵为碳源、氮源,培养基初始pH为6.8,培养温度为30℃,种子活化时间为24h,接种量为3%(体积分数)。在此条件下培养72h后,最高酶活力为1.314IU/mL,是优化前的1.77倍。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号