首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   215篇
  免费   42篇
  国内免费   173篇
安全科学   23篇
废物处理   17篇
环保管理   2篇
综合类   215篇
基础理论   111篇
污染及防治   41篇
评价与监测   18篇
社会与环境   1篇
灾害及防治   2篇
  2024年   3篇
  2023年   21篇
  2022年   23篇
  2021年   32篇
  2020年   16篇
  2019年   19篇
  2018年   14篇
  2017年   18篇
  2016年   26篇
  2015年   29篇
  2014年   32篇
  2013年   33篇
  2012年   24篇
  2011年   21篇
  2010年   13篇
  2009年   31篇
  2008年   23篇
  2007年   18篇
  2006年   12篇
  2005年   10篇
  2004年   6篇
  2003年   1篇
  2002年   3篇
  1995年   1篇
  1990年   1篇
排序方式: 共有430条查询结果,搜索用时 109 毫秒
131.
熊振湖  朱乐 《环境科学学报》2013,33(5):1264-1271
通过羧化、酰氯化、酰胺化反应在多壁碳纳米管(MWCNTs)表面引入不饱和侧链(-CH=CH2),然后以双酚A(BPA)为模板分子,4-乙烯吡啶(4-VP)为功能单体,乙二醇二甲基丙烯酸酯(EGDMA)为交联剂,在MWCNTs-CH=CH2表面制备一种新型的分子印迹聚合物纳米材料.采用扫描电镜、傅里叶变换红外光谱(FT-IR)、热重分析对制备吸附剂(MWCNTs@BPA-MIPs)的结构与形态进行了表征且证实有一层稳定的分子印迹聚合物(MIPs)接枝在MWCNTs的表面通过平衡结合实验与斯卡查德(Scatchard)分析证实了印迹聚合物的吸附性质.结果证实,BPA的吸附容量高达123.8 mg·g-1,而且与模板分子BPA的类似物双酚C(BPC)和邻硝基酚(o-NP)比较,MWCNTs@BPA-MIPs对BPA具有更好的选择性和更快的吸附动力学特性.  相似文献   
132.
作为目前产量和使用量最大的溴系阻燃剂,四溴双酚A(Tetrabromobisphenol A,TBBPA)在其生产、使用及处置等环节会被释放到环境中,由于四溴双酚A具有持久性、累积性和生物毒性等特性而对人类健康和生态环境造成威胁。文章在简单介绍四溴双酚A主要性质和毒性的基础上,结合近几年国内外的研究现状,综述了四溴双酚A在光降解、微生物降解和高级氧化等技术的最新研究进展,并对目前存在的问题及未来的研究方向进行了讨论与展望。  相似文献   
133.
光催化技术作为一种绿色、高效、廉价的水处理技术,被广泛应用于如内分泌干扰素等持久性有机物的降解治理.利用高比表面的金属有机框架材料修饰半导体材料可有效提高半导体的光催化性能.本研究以比表面积高且具有孔径规则的ZIF-8修饰中空花瓣状BiOI半导体材料,制备性能优异的BiOI/ZIF-8光催化复合材料.同时,利用多晶X射线衍射、扫描电子显微镜、高分辨透射电镜、紫外-可见漫反射等研究手段对样品进行表征.最后,采用高效液相色谱仪对光催化降解样品进行浓度分析,探究复合材料的光催化活性.结果表明,修饰后BiOI/ZIF-8复合材料的光催化性能显著增强,而当BiOI与ZIF-8质量比为1∶1时复合材料的光催化降解性能最好,可见光照射45 min后对20 mg·L-1双酚A溶液的降解率达到99.77%.通过活性自由基捕集实验和ESR测试分析了光催化的降解机理.  相似文献   
134.
为解决水环境中内分泌干扰物的去除难题,采用水热法合成Bi2WO6@MXenes-NS(BM-NS)复合催化剂,通过活化过单硫酸盐(PMS)降解双酚A (BPA)。利用SEM、TEM及XRD对所制备催化剂的形貌和晶体结构进行表征,考察了不同催化剂体系、PMS浓度,溶液pH和共存离子等因素对BPA降解性能的影响。结果表明:当MXenes-NS添加量(质量分数)为0.5%,催化剂浓度为1 g/L,PMS浓度为0.3 g/L,溶液pH为3.03时,BM-NS/PMS体系具有较强的BPA降解性能,120 min内去除率达到85.3%。溶液中无机阴离子对BPA去除率的影响顺序为Cl-2PO-42-4-3≈NO-3。催化剂经过4次循环实验后,BPA去除率仍保持在70.1%。自由基猝灭实验结果表明,SO  相似文献   
135.
利用氧化石墨烯和氨水为原料,采用水热法-冷冻干燥技术制备了易回收氮掺杂还原氧化石墨烯泡沫(N-RGF)催化剂,通过SEM,XRD,XPS,FT-IR,BET和TG等手段对催化剂结构和表面物理化学性质进行表征和分析.利用N-RGF通过吸附/活化过二硫酸盐(PDS)降解协同去除双酚A(BPA),优化了其制备条件,并探讨去除机理.结果表明,N-RGF为网状三维结构,孔径约为1~5μm,最优条件为180℃水热反应20h,氮掺杂量为6%.制备的N-RGF降解BPA速率是RGF的4.88倍.活性物种捕获实验和电子顺磁共振(EPR)研究结果显示单线态氧(1O2)是N-RGF活化PDS降解BPA的主要活性物种.HPLC-MS检测了降解过程的中间体,并提出了可能的降解途径.MCF-7雌激素活性测试结果显示N-RGF通过吸附/活化PDS可有效消除母体的雌激素活性而不产生雌激素活性更强的中间体.  相似文献   
136.
双酚类化合物作为重要的有机化工原料,广泛应用于各行各业。然而双酚类化合物是一类内分泌干扰物,毒性评价结果表明其与许多疾病发病率的升高密切相关。伴随双酚类化合物的大量使用,诸多环境样品中都检测出双酚类化合物。由于双酚类化合物的结构稳定,很难在自然界中被完全降解,会不断累积,对生态安全和人体健康产生危害,亟待有效修复。有机污染物的物理化学修复方法易对环境造成二次污染,微生物降解因其获取容易、无二次污染等特点成为双酚类化合物修复的有效途径。本文总结概述了几种典型双酚类化合物的毒性评价及微生物降解机制。  相似文献   
137.
采用电化学沉积法将不同浓度的碳纳米管(CNT)掺入PbO2电极,得到具有高稳定性和催化活性的CNT-PbO2复合电极。扫描电子显微镜(SEM)、能量色散谱(EDS)等测试分析发现CNT掺杂到PbO2电极表面活性层中,CNT掺杂使得PbO2晶粒尺寸减小,活性表面积增大。CNT-PbO2电极降解双酚A体系中自由基生成量减少,但其降解效果反而提升。循环伏安测试(CV)、电极加速寿命测试表明,CNT-PbO2电极降解双酚A的机理主要是改性后的电极具有更强的电化学直接氧化能力和更高的稳定性。最后通过UPLC&Q-TOF MS测试得到双酚A的主要降解产物和降解路径。  相似文献   
138.
巢湖水域四溴双酚A的多介质迁移与归趋模拟   总被引:2,自引:0,他引:2  
运用Ⅲ级逸度模型,模拟并研究了不同水动力条件下四溴双酚A(TBBPA)在巢湖水-沉积物系统中各环境相的浓度、储量以及相间的迁移通量.结果表明:TBBPA在水相、再悬浮颗粒相和沉积物相中的模拟计算浓度与实测平均浓度吻合度较高,验证了模型的有效性,并通过灵敏度分析探讨了模拟关键参数.当系统达到平衡时,沉积物是TBBPA最大的储库(占系统总储量86%以上).同时,由于较强的水动力条件会改变系统再悬浮特征以及降解半衰期等关键参数,进而降低了各环境相中TBBPA的浓度值,增加了水相和再悬浮颗粒相中的储量比例,并增加了水体-再悬浮颗粒、沉积物-再悬浮颗粒的相间交换通量.此外,TBBPA在巢湖水-沉积物系统中损失的主要途径为沉积物相的降解(占入湖总量87%以上).  相似文献   
139.
为了明确双酚AF(BPAF)对水生生物行为的影响,考察了BPAF对大型溞的急性毒性和慢性毒性(生殖、生长、发育、生理等)影响.结果显示,BPAF对大型溞的24h和48h半致死浓度(LC50)分别为9.70mg/L和5.02mg/L.根据化学品分类和标签规范,BPAF属于毒性Ⅱ级.BPAF对大型溞生殖、生长、发育和生理的毒性影响结果表明,高浓度BPAF(100 μg/L)导致大型溞性成熟时间明显延迟,并显著降低了大型溞产卵频次、产卵总数等生殖行为,且对大型溞的生长、发育产生显著抑制现象,同时造成种群繁衍能力显著受损.本文旨在为BPAF对水生生物的生态行为影响提供理论依据.  相似文献   
140.
以采自内蒙古霍林河煤矿的煤样为研究对象,通过模拟实验研究了四溴双酚A在煤胶体上的吸附行为,重点探讨了温度、p H值和离子强度对四溴双酚A在煤胶体上表面吸附和分配作用的影响.结果表明:煤胶体对四溴双酚A的吸附过程可由Freundlich表面吸附-分配复合模型很好地描述.随着温度的升高,四溴双酚A在煤胶体上吸附的分配作用和表面吸附同样都有所下降,但温度的升高对分配作用的影响程度较大.p H值主要影响四溴双酚A在煤胶体上的分配作用,在p H值为9时,四溴双酚A在煤胶体上的吸附以表面吸附为主,其对总吸附量的贡献率为97.5%;而在p H值为6~8时,则以分配作用为主,其对总吸附量的贡献率为64.0%~78.9%.Ca~(2+)浓度为0.001~0.1 mol·L~(-1)时,离子强度对于四溴双酚A在煤胶体上的表面吸附和分配作用均影响较小.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号