全文获取类型
收费全文 | 887篇 |
免费 | 46篇 |
国内免费 | 241篇 |
专业分类
安全科学 | 71篇 |
废物处理 | 63篇 |
环保管理 | 87篇 |
综合类 | 712篇 |
基础理论 | 145篇 |
污染及防治 | 62篇 |
评价与监测 | 26篇 |
社会与环境 | 1篇 |
灾害及防治 | 7篇 |
出版年
2024年 | 70篇 |
2023年 | 130篇 |
2022年 | 150篇 |
2021年 | 108篇 |
2020年 | 68篇 |
2019年 | 43篇 |
2018年 | 14篇 |
2017年 | 6篇 |
2016年 | 13篇 |
2015年 | 14篇 |
2014年 | 25篇 |
2013年 | 17篇 |
2012年 | 13篇 |
2011年 | 38篇 |
2010年 | 28篇 |
2009年 | 28篇 |
2008年 | 52篇 |
2007年 | 27篇 |
2006年 | 32篇 |
2005年 | 24篇 |
2004年 | 28篇 |
2003年 | 27篇 |
2002年 | 31篇 |
2001年 | 20篇 |
2000年 | 15篇 |
1999年 | 21篇 |
1998年 | 16篇 |
1997年 | 20篇 |
1996年 | 19篇 |
1995年 | 21篇 |
1994年 | 10篇 |
1993年 | 11篇 |
1992年 | 16篇 |
1991年 | 11篇 |
1990年 | 6篇 |
1989年 | 2篇 |
排序方式: 共有1174条查询结果,搜索用时 15 毫秒
991.
海洋塑料污染成为与气候变化、臭氧耗竭和海洋酸化并列的全球重大环境问题,其中海洋微/纳塑料成为关注的重点。纳塑料与微塑料相比,粒径更小,比表面积更大,环境丰度更高,更容易被海洋生物所摄食,对海洋生物产生的毒性更强。因此,纳塑料的海洋环境效应研究成为近年来环境科学领域的研究热点。但迄今为止,关于海洋纳塑料的环境行为与生物效应仍缺乏系统性的研究和清晰的认知。基于此,本文综述了海洋纳塑料的检测分析方法,概述了纳塑料的海洋环境行为,分析了纳塑料对海洋生物的毒性效应及其致毒机制,并展望了海洋纳塑料环境效应的研究方向,以期为科学评估海洋纳塑料的生态风险及有效应对海洋纳塑料污染提供重要参考。 相似文献
992.
微塑料作为一种全球性新兴污染物受到学界与社会的广泛关注.由于土壤和沉积物中的微塑料难以分离提取,目前关于微塑料的研究主要集中于水体中,而关于土壤与沉积物中微塑料的丰度、分布与环境行为尚不清楚,迫切需要一种经济、快速、可靠的前处理手段将微塑料从土壤或沉积物中分离出来进而开展检测与监测工作.油提取法不同于传统密度浮选法,其利用塑料的亲油性,使用植物油代替密度液分离土壤与沉积物中的微塑料.通过油提取法在砂土(二长花岗岩风化层残坡积物)、壤土(菜地黄棕壤)、黏土(稻田水稻土)、泥质湖泊沉积物中获得的总加标回收率分别为88.3%±6.29%、88.3%±3.82%、90.0%±2.50%、90.8%±1.44%.其中,对于密度浮选法较难提取的聚氯乙烯(PVC)、聚对苯二甲酸乙二醇酯(PET),其回收率分别为93.3%±11.6%(壤土)、96.7%±5.77%(壤土).植物油的加入会对后续微塑料的光谱表征识别产生影响,但可通过无水乙醇冲洗去除,与拉曼光谱仍具有良好的兼容性.利用该方法开展的实地研究获得黄冈市残坡积物(砂土)、武汉市菜地(壤土)、武汉市水稻田(黏土)、武汉市东湖泥质湖泊沉积物中的微塑料丰度分别为1 679、1 612、1 766、7 629个/kg.研究显示,油提取是当下密度浮选技术的可替代方案. 相似文献
993.
994.
自然环境中微塑料样品的采集与分离方法 总被引:3,自引:0,他引:3
综述了自然环境中微塑料样品采集与分离方法的研究进展,介绍了水环境、土壤与沉积物、环境空气、生物体等不同介质中微塑料的采集方法、技术原理和使用条件,以及密度分离、筛选分离、滤膜过滤等分离提取和预处理方法,提出了建立统一的微塑料采样指南,开展空气中微塑料富集、采样、分离和检测标准方法研究等建议。 相似文献
995.
多波段激光防护塑料的研制 总被引:2,自引:0,他引:2
本文以PMMA为基质制备了多波段激光防护塑料样品,对其性能进行了测试,该样品对YAG激光有很好的防护作用,达到实用要求。 相似文献
996.
997.
998.
论述了“白色污染”的危害、形成的原因,国外塑料废弃物管理现状,提出了解决我国“白色污染”防治对策。 相似文献
1000.
Allen F. Zielnik 《装备环境工程》2007,4(5):90-91
塑料部件的老化测试逐渐成为防止潜在的产品失效的决定性步骤.随着越来越多的原始设备制造商开始向加工商征求设计及材料选择方案,使用过程中的老化失效责任也渐渐地进入了供应链.在汽车用塑料行业中,这种现象尤其明显.原始设备制造商、加工商、合成材料制造商及添加剂供应商对于产品的最终使用环境的交流通常不够充分,而对于如何使用产品及产品使用地点的误解是造成产品失效的原因之一. 相似文献