全文获取类型
收费全文 | 484篇 |
免费 | 80篇 |
国内免费 | 283篇 |
专业分类
安全科学 | 38篇 |
废物处理 | 8篇 |
环保管理 | 23篇 |
综合类 | 557篇 |
基础理论 | 109篇 |
污染及防治 | 55篇 |
评价与监测 | 50篇 |
社会与环境 | 4篇 |
灾害及防治 | 3篇 |
出版年
2024年 | 32篇 |
2023年 | 61篇 |
2022年 | 68篇 |
2021年 | 66篇 |
2020年 | 66篇 |
2019年 | 61篇 |
2018年 | 40篇 |
2017年 | 37篇 |
2016年 | 36篇 |
2015年 | 42篇 |
2014年 | 45篇 |
2013年 | 26篇 |
2012年 | 29篇 |
2011年 | 30篇 |
2010年 | 12篇 |
2009年 | 20篇 |
2008年 | 25篇 |
2007年 | 24篇 |
2006年 | 25篇 |
2005年 | 17篇 |
2004年 | 15篇 |
2003年 | 14篇 |
2002年 | 11篇 |
2001年 | 6篇 |
2000年 | 5篇 |
1999年 | 5篇 |
1998年 | 4篇 |
1997年 | 3篇 |
1996年 | 3篇 |
1995年 | 2篇 |
1994年 | 1篇 |
1993年 | 4篇 |
1992年 | 6篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1989年 | 2篇 |
排序方式: 共有847条查询结果,搜索用时 46 毫秒
391.
广东省典型电子工业企业挥发性有机物排放特征研究 总被引:10,自引:4,他引:10
针对广东省电子工业进行调研与监测,分别选取了手机、相机及笔记本电脑3类典型产品的代表性企业为研究对象,利用活性炭管采样,样品经溶剂解吸后采用GC/MS分析,获得了排气筒及车间废气的VOCs含量水平及组分特征,并利用监测计算法、排放因子法及物料衡算法3种方式计算了各企业的VOCs排放量.结果表明:喷涂车间VOCs浓度范围为43.01~322.34 mg·m~(-3),调漆、供漆车间VOCs浓度范围为103~172.714 mg·m~(-3);车间中VOCs物种为8~10种,不同产品类型VOCs物种不同,但含氧VOCs的比例均超过50%.排气筒的VOCs浓度范围为48.01~155.38 mg·m~(-3),且不同产品排气筒的VOCs物种均比车间成分简单.3种方式计算的VOCs排放量不同,其中,物料衡算法计算结果最大,监测计算法计算结果最小.3类产品喷涂车间非致癌风险危害商值(HQ)在3.44×10-3~7.17之间,总危害商值之和(HI)分别为2.22×10-2、1.97及7.27. 相似文献
392.
《环境科学与技术》2016,(2)
该研究通过对邯郸市环境空气中PM_(2.5)样本进行采集和成分检测,分析了该地区PM_(2.5)的浓度及化学组成特征,利用相关性分析法和富集因子法定性判断了PM_(2.5)的主要来源,利用PCA模型定量计算了各类污染源的贡献率,最后将解析结果与已有的PMF模型结果进行了对比分析。结果表明,邯郸市PM_(2.5)日均浓度(2012年10月13日-2013年1月)为146.9 g/m3,是我国环境空气质量标准(Ⅱ级)的2倍。二次水溶性离子、OC、EC是邯郸市PM_(2.5)的主要成分,约占PM_(2.5)总质量浓度的71.5%,其中,OC是PM_(2.5)中含量最丰富的单个组分,大气有机污染特征明显。PCA模型源解析结果为:工业和燃煤33.3%,二次气溶胶和生物质燃烧21.7%,机动车为12.8%,道路扬尘9.1%。将PCA、PMF模型解析结果对比后发现2种模型对PM_(2.5)的来源有较为一致的判定,工业源和燃煤源是该地区PM_(2.5)的主要来源,两者的总贡献率分别为42.1%(PMF)和33.3%(PCA)。除此之外,PMF单独解析出了Ba、Mn、Zn源,K、As、V源和重油燃烧源,PCA单独解析出了生物质燃烧源,不同的解析结果一方面与模型本身有关,另一方面与模型选择的化学成分有关。 相似文献
393.
为阐明PM2.5诱发肝脏纤维化的潜在机制以及导致这种不良效应的主要组分,本研究以采自我国太原、北京、杭州和广州市的PM2.5暴露10月龄C57BL/6雌性小鼠4周后,利用组织切片染色,荧光定量PCR (qRT-PCR)以及Western blot技术检测小鼠肝脏纤维化的发生,并采用皮尔森相关系数法分析不同城市PM2.5暴露组小鼠肝脏纤维化相关基因表达水平与各城市典型化学组分的线性相关关系.结果发现,与对照组相比,太原组和杭州组小鼠肝脏脏器系数显著降低;太原组小鼠肝脏胶原沉积面积显著增加,肝脏纤维化相关基因(Col1a1、Col3a1、TGF-β和MMP2)的转录水平显著升高,并且也仅有太原组PM2.5暴露诱导了小鼠肝脏Col1a1蛋白的显著增高,而其他城市PM2.5暴露组并未见上述纤维化相关因子的显著变化.相关性分析结果显示,Cr、Mn、Mo、Cs、Pb、Bi、U和Fe等金属组分与Col1a1和Col3a1的mRNA表达呈显著正相关,除NA、AC及BaP外其余15种多环芳烃均与Col1a1表达显著相关,18种PAHs之和与Col3a1表达显著相关.上述结果表明,PM2.5暴露可导致小鼠肝脏纤维化的发生,其中太原市PM2.5诱导肝脏纤维化发生最为显著,TGF-β及其通路中相关信号分子在介导PM2.5诱发肝脏纤维化发生中发挥了重要作用,Cr、Mn、Mo、Cs、Pb、Bi、U、Fe及PAHs很可能是细颗粒物暴露导致小鼠肝脏纤维化的关键毒性组分. 相似文献
394.
本研究采用Aerodyne气溶胶化学组成在线监测质谱仪ACSM,于2019年春季、夏季后期、秋季和冬季典型代表月对北京市东南城区非难熔亚微米颗粒物NR-PM1进行了实时监测与分析,研究了NR-PM1及其物种在不同时段,特别是霾污染期间的演变特征,以及4个季节有机物的来源.结果表明,整个研究期间NR-PM1的平均浓度为22.06μg/m3,其季节变化呈现出春季>冬季>秋季>夏季后期的特征.整个研究期间,Org (有机物)的平均浓度为7.12μg/m3,占NR-PM1的32.30%;NO3-和SO42-的平均浓度分别为5.91和6.20μg/m3,分别占NR-PM1的26.80%和28.12%;而NH4+和Cl-的平均质量浓度和质量百分数均较低.所有物种呈现出Org> SO42-~NO3-> NH4+>Cl-的特征.清洁天NR-PM1以Org为主要特征,各季节所有物种的日变化均较小,而霾污染天NR-PM1以二次无机物种为主要特征,不同季节各物种表现出不同的日变化特征.OA (有机气溶胶)在不同季节解析出的物种有所不同.一次有机气溶胶POA对OA的贡献随春夏秋冬逐渐升高,而二次有机气溶胶SOA则随之逐渐降低. 相似文献
395.
于2015年8月到2016年4月在菏泽市城区采集PM_(2.5)颗粒,利用热/光碳分析仪测定了颗粒物中8种碳组分,获得了有机碳(OC)和元素碳(EC)的质量浓度,分析了OC与EC的比值、相关性,使用OC/EC比值法估算了二次有机碳(SOC)的浓度,并使用主成分分析法研究8种碳组分含量.结果表明,(1)PM_(2.5)中OC、EC的年质量浓度变化范围分别为1.2~60.6μg·m~(-3)、0.6~24.8μg·m~(-3),OC/PM_(2.5)、EC/PM_(2.5)的季节分布特征相似:冬季春季秋季夏季;(2)OC/EC的年平均值为2.6±1.0,春夏秋冬OC、EC的相关系数分别为0.91、0.56、0.86、0.75,估算的SOC年平均浓度为(4.7±5.0)μg·m~(-3);(3)不同季节8种碳组分质量分数均为EC1最高,EC3最低.主成分分析结果显示,春秋冬这3个季节碳组分的主要来源为燃煤、机动车和生物质燃烧. 相似文献
396.
397.
广州地区秋冬季细颗粒物PM_(2.5)化学组分分析 总被引:1,自引:0,他引:1
本文对广州地区2009~2010年秋冬季节大气中PM2.5进行采样,并分析PM2.5样品的水溶性离子、重金属元素、有机碳/元素碳(OC/EC)、有机酸、多环芳烃浓度和粒径分布。通过分析初步掌握了广州地区秋冬季节大气中PM2.5的化学组分和特点:广州地区秋冬季PM2.5呈现城区高于城郊,PM2.5中有机质(OM)是最主要的成分,其次是硫酸根离子、硝酸根离子和铵根;PM2.5中有机碳和元素碳的空间分布特征相似,并受一次源排放影响;PM2.5中铝、锌、铅是含量最高的重金属,且城区重金属浓度高于城郊;PM2.5中17种多环芳烃、苯并a芘(BaP)均为城郊浓度最高。 相似文献
398.
民用燃煤排放分级颗粒物中碳组分排放因子 总被引:1,自引:2,他引:1
中国是全球碳质气溶胶最重要的贡献者之一,民用燃煤排放占有很大的比重.排放因子的不确定性直接影响碳气溶胶排放清单的准确性.本研究基于室内模拟燃烧实验和稀释通道采样系统,采用FA-3型9级撞击采样器采集了3种蜂窝煤(考虑明烧和闷烧)和包括烟煤与褐煤在内的4种块煤燃烧排放的九级粒径颗粒物,采用热光法分析了不同粒径颗粒物中有机碳(OC)和元素碳(EC)的含量,计算得到排放因子.结果表明:(1)对于蜂窝煤的明烧与闷烧,PM2.1中OC排放因子分别为0.07g·kg~(-1)和0.10 g·kg~(-1),EC的排放因子为0.002 g·kg~(-1)和0.001 g·kg~(-1);闷烧排放的有机碳颗粒物高于明烧;元素碳排放因子低于明烧.块煤排放PM2.1中OC与EC排放因子分别是1.4 g·kg~(-1)和0.02 g·kg~(-1),高出蜂窝煤排放一个数量级.(2)粒径分析结果表明,民用煤燃烧排放的颗粒物及其载带的碳组分集中在细颗粒物上,碳组分的质量中值粒径均小于2.5μm,总碳(OC+EC)的排放因子粒径分布表明蜂窝煤燃烧排放的碳组分富集于≤0.43μm粒径段,块煤富集于0.43~0.65μm粒径段. 相似文献
399.
为研究天津市春季道路降尘PM2.5和PM10中碳组分特征,丰富道路降尘的成分谱库,于2015年3月22日-5月23日在天津市主干道、次干道、支路、快速路和环线5种道路类型道路两侧采集道路降尘样品,通过再悬浮装置得到PM2.5和PM10的滤膜样品,并用热光碳分析仪测定PM2.5和PM10中OC(有机碳)和EC(元素碳)的百分含量,利用两相关样本非参数检验、OC/EC比值法以及相关分析法,定性分析天津市春季道路降尘PM2.5和PM10的碳组分的特征及其主要来源;利用因子分析法,进一步分析道路降尘PM2.5和PM10的主要来源.结果表明:道路降尘PM2.5中w(OC)为10.27%(主干道)~13.94%(快速路)、w(EC)为1.24%(支路)~1.77%(环线),PM10中w(OC)为8.48%(主干道)~12.56%(快速路)、w(EC)为1.01%(次干道)~1.59%(快速路),可见快速路中碳组分含量相对较高,这可能与其车流量较大,导致道路扬尘和机动车尾气排放量较大有关,也可能与其路面保养及保洁状况有关.对于大部分碳组分而言,其在PM2.5中的百分含量均高于PM10;除EC2,其他碳组分在PM2.5和PM10间均无显著性差异.不同道路类型PM2.5和PM10中OC/EC的大小顺序基本相同,与其车质量变化趋势相反.道路降尘中PM2.5中碳组分主要来源于道路扬尘、机动车尾气、生物质燃烧以及燃煤源的混合源,PM10主要受道路扬尘、燃煤和柴油车尾气等污染源的影响. 相似文献
400.
为明确NH_4~+、 NO_3~-、SO_4~(2-)及金属等组分在水溶性提取液对发光细菌的光抑制过程中所起的作用,参照PM_(2.5)样品提取液浓度,模拟配制与3级以上PM_(2.5)样品提取液中主要组分:硫酸盐、硝酸盐、氨盐相同浓度的溶液,同时选取与PM_(2.5)可溶性提取液发光抑制率相关性较强的铅、锌,配制不同浓度级别模拟溶液,测试各单一组分对发光细菌的发光抑制率及其混合溶液对发光细菌的联合影响效应。基于毒性单位法(TU)、相加指数法(AI)和混合毒性指数法(MTI)评价了混合体系联合影响的作用类型。结果表明,与3~6级PM_(2.5)可溶性提取液中硫酸氨、硫酸氢氨、硝酸氨、硫酸锌和硝酸铅浓度相同的模拟溶液对发光细菌的发光没有抑制作用。不同的评价方法对PM_(2.5)主要组分混合体系联合效应评价结果具有较好的一致性,硫酸氨、硝酸氨、硫酸氢氨混合溶液中,对发光细菌的光抑制均为硫酸氢氨的独立作用,硫酸锌与硝酸铅的混合体系,锌和铅对发光细菌的联合影响效应表现为协同,硫酸氨、硝酸氨、硫酸氢氨与硫酸锌、硝酸铅的多元混合体系呈现协同作用。 相似文献