首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3117篇
  免费   335篇
  国内免费   606篇
安全科学   205篇
废物处理   632篇
环保管理   351篇
综合类   2160篇
基础理论   176篇
污染及防治   486篇
评价与监测   35篇
社会与环境   2篇
灾害及防治   11篇
  2024年   41篇
  2023年   101篇
  2022年   133篇
  2021年   189篇
  2020年   147篇
  2019年   149篇
  2018年   71篇
  2017年   88篇
  2016年   121篇
  2015年   183篇
  2014年   320篇
  2013年   171篇
  2012年   165篇
  2011年   149篇
  2010年   135篇
  2009年   151篇
  2008年   152篇
  2007年   133篇
  2006年   140篇
  2005年   139篇
  2004年   141篇
  2003年   122篇
  2002年   118篇
  2001年   106篇
  2000年   74篇
  1999年   93篇
  1998年   77篇
  1997年   66篇
  1996年   67篇
  1995年   64篇
  1994年   59篇
  1993年   50篇
  1992年   46篇
  1991年   27篇
  1990年   43篇
  1989年   24篇
  1988年   2篇
  1987年   1篇
排序方式: 共有4058条查询结果,搜索用时 468 毫秒
701.
采用放电等离子体技术联合催化剂对二甲苯进行处理,提出了相对去除率和绝对去除率的概念,特别关注了催化剂活性成分对处理效果的影响规律.结果表明,催化剂的存在不但能有效提高相对去除率,同时能提高绝对去除率.催化剂活性成分种类对提高二甲苯绝对去除率影响很大,影响顺序为:CoO/γ-Al2O3>FeO3/γ-Al2O3>MnO2...  相似文献   
702.
为了解决臭氧催化氧化技术中废旧催化剂处理困难的问题,对用于某石化废水生化出水处理长达5年的废旧臭氧催化剂进行了焙烧再生研究.通过焙烧能够有效燃烧去除催化剂表面及孔隙中的有机物质,增大催化剂孔径和孔隙率,从而恢复废旧催化剂的部分活性.单因素试验对催化剂焙烧温度和焙烧时间优化结果表明:(1)随着焙烧温度从200℃提高到500℃,再生催化剂用于臭氧催化对石化废水生化出水TOC(总有机碳)的去除效果逐渐提升,500℃时TOC去除率可达44.30%,进一步提高焙烧温度去除效果提升不明显.(2)焙烧时间为2、3、4和5 h时,再生催化剂处理石化废水效能随焙烧时间增加先升高再降低,4 h时TOC去除效果最好.(3)在相同运行条件下,优化焙烧条件(500℃、4 h)下得到的再生催化剂对石化废水生化出水的TOC去除率可达新催化剂的77.46%,相较于新催化剂,再生催化剂的颗粒尺寸和平均孔径减小,而比表面积有所增大.(4)通过皮尔逊相关性分析,探索了废水中有机物和三维荧光测试结果的相关性,认为荧光区域积分体积可以间接反映石化废水中的有机物含量,也可间接反映臭氧再生催化剂的催化性能.研究显示,直接焙烧可以作...  相似文献   
703.
在前期研究固废基陶粒的制备及性能表征的基础上,该文采用静态和动态试验方法,开展固废基陶粒处理模拟含磷废水研究。结果表明:在初始浓度为17 mg/L和反应温度为293 K时,固废基陶粒对水中磷的平衡吸附量可达1.013 mg/g,Freundlich吸附等温模型和准一级动力学方程都能较好地描述该吸附过程(R2>0.95),且是一个自发的放热的物理吸附过程。在反应温度为293 K时,随着初始浓度由5 mg/L增至17 mg/L,基于固废基陶粒的固定床反应装置去除水中磷的穿透曲线变得越来越陡峭,穿透时间和饱和时间分别由34 h和60 h缩短至18 h和32 h,此外Yoon-Nelson固定床反应动力学方程能比较精确地描述动态除磷过程(R2>0.95)。  相似文献   
704.
中国于2018年提出“无废城市”建设试点工作方案。通过对某试点研究区域调研发现,近年来当地生活垃圾产量呈现高出城市人口发展速度,且呈非线性快速增长趋势。传统的预测手段已经无法满足当地垃圾产量的精细化管理需求,难以将当地垃圾处理能力的发展与产量增加的趋势相协调。因此,基于社会多元数据,构建对研究区域整体垃圾总产量预测的模型研究方案。通过将灰色关联分析算法与LightGBM机器学习算法结合,获得了多元社会数据中与研究区域垃圾产生增长关联最为密切的几类特征数据,以进行机器学习模型构建与交叉验证调优,获得了MAE为1.48,MAPE为15.42%的生活垃圾产量精准预测模型。最终利用该模型预测,2025年该地的生活垃圾产量将达到17.23万t/a。  相似文献   
705.
采用硬模板法制备了Fe掺杂Mn-Ce多孔催化剂,评价了催化剂低温NH3-SCR性能及甲苯对低温NH3-SCR性能的影响;并通过XRD、BET、SEM、HRTEM、H2-TPR、NH3-TPD、XPS和原位红外等对催化剂理化性质进行了表征.结果表明Fe掺杂Mn-Ce多孔催化剂具有优异的低温NH3-SCR性能.高浓度甲苯抑制低温NH3-SCR性能是因为甲苯的不完全氧化消耗催化剂表面的吸附氧.同时甲苯及其不完全氧化产物(主要为苯甲酸盐)不断覆盖催化剂表面的活性位点,与NH3/NOx的吸附和活化形成竞争关系,从而阻碍E-R和L-H机理.Fe的掺杂使得催化剂表面晶格氧浓度上升,并提高了晶格氧的迁移能力.当NH3-SCR反应中存在甲苯时,通过Mn4++Ce3+?Mn3++Ce4+、Fe2++Ce...  相似文献   
706.
本文综述了碳链延长技术在处理有机废料及碳资源回收领域的优势,梳理了其发展历程为后续研究提供方向指导,阐释了其生化代谢途径中物质转变、能量传递和信号传输等机理,验证了其延长为丁酸、己酸等产物的热力和动力学可行性,总结归纳了其已优化的关键反应参数和已运行的工程试验案例等方面内容.本文为揭示细胞碳链延长机制和应用碳链延长技术于实际废料治理提供理论基础和建议展望.  相似文献   
707.
司涵  黄琼  陶涛  杨波  赵云霞  陈敏东 《中国环境科学》2021,40(10):4314-4322
采用柠檬酸络合法制备La-M-Co-O(M=Mn,Cr,Fe,Ni和Cu)/堇青石催化剂,运用BET,XRD,SEM,H2-TPR和XPS技术对催化剂性能及微观结构进行表征分析,研究考察过渡金属掺杂,掺杂量以及焙烧温度等对催化剂催化氧化性能的影响.结果表明,随着催化剂焙烧温度升高至650℃时,催化剂表面所负载的活性氧化物颗粒最为分散,其氧化活性最佳,且当反应温度为350℃时,催化剂催化氧化氯苯转化率可达96.4%,究其原因是高温焙烧致使催化剂形成LaCoO3钙钛矿型复合氧化物,其复合氧化物的晶体结构有利于催化剂催化氧化氯苯性能的提高.  相似文献   
708.
采用不同工艺制备V2O5-WO3-MoOx/TiO2堇青石整体式催化剂,以甲苯和NO为探针分子,考察了Mo的负载量、涂覆方法、粘结剂的种类等制备工艺对整体式催化剂性能的影响,用XRD、SEM-EDS、FT-IR、BET等技术对催化剂进行了表征分析.结果表明,采用涂敷法,以添加量为1%的甲基纤维素为粘结剂所制备的V1W6Mo3/TiO2堇青石蜂窝陶瓷整体式催化剂具有最优活性和稳定性(T90为307℃,负载率为28.26%,脱落率为6.81%),在燃煤烟气中具有优异的同步去除VOCs与NO性能,甲苯去除率可达99%,NO去除率为100%,N2选择性为99%.XRD、SEM-EDS表明V、W、Mo活性组分分布均匀且高度分散.FT-IR证明添加甲基纤维素的整体式催化剂具有优异的抗硫性能.  相似文献   
709.
针对典型难生物降解污染物,为强化其在废水处理中的降解去除,开展了合成类芬顿催化剂及其对安替比林(ANT)及染料降解特性的研究。水热法合成的Cu1-xCoxFe2O4金属氧化物催化剂是一种具有尖晶石立方结构的磁性材料,比表面积为147.3~187.5 m2/g,饱和磁化值为17.2~62.3 EMU/g。随着Co含量逐渐增加,催化剂的催化活性有明显提高。所得最佳Cu0.25Co0.75Fe2O4催化剂的适用pH值为7~9,ANT初始浓度为50 mg/L,催化剂投加量为0.7 g/L和H2O2投加量为150 mmol/L的条件下,当反应初始pH=7时,对ANT去除率为93.1%;pH=9时去除率达到94.7%。不同类型的难降解有机物,如罗丹明B和酸性橙Ⅱ在该催化剂催化作用下也可实现有效降解。催化剂通过磁性回收再利用5次循环后,ANT去除率仍保持在80%以上,表明催化剂具有较好的稳定性和重复使用性。研究合成的类芬顿催化剂为高效去除废水中的难降解有机物提供了科学依据。  相似文献   
710.
烟气中所含的二氧化硫(SO2),氮氧化物(NOx),重金属汞(Hg)等污染物都能对人体健康及周围环境产生危害.本文综述了臭氧法应用于烟气净化的研究进展、工业应用及反应机理,探讨了臭氧同时脱硫脱硝脱汞的主要影响因素,介绍了臭氧发生技术的研究现状,并对臭氧应用于烟气净化进行了经济性分析,认为臭氧法脱除烟气中的多种污染物具有广泛的应用前景.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号