首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2091篇
  免费   210篇
  国内免费   884篇
安全科学   175篇
废物处理   98篇
环保管理   133篇
综合类   1768篇
基础理论   369篇
污染及防治   484篇
评价与监测   130篇
社会与环境   10篇
灾害及防治   18篇
  2024年   73篇
  2023年   180篇
  2022年   206篇
  2021年   178篇
  2020年   117篇
  2019年   106篇
  2018年   64篇
  2017年   80篇
  2016年   110篇
  2015年   129篇
  2014年   176篇
  2013年   131篇
  2012年   140篇
  2011年   133篇
  2010年   136篇
  2009年   161篇
  2008年   135篇
  2007年   119篇
  2006年   129篇
  2005年   87篇
  2004年   80篇
  2003年   86篇
  2002年   74篇
  2001年   53篇
  2000年   54篇
  1999年   52篇
  1998年   30篇
  1997年   20篇
  1996年   27篇
  1995年   27篇
  1994年   31篇
  1993年   13篇
  1992年   11篇
  1991年   11篇
  1990年   9篇
  1989年   14篇
  1988年   1篇
  1986年   2篇
排序方式: 共有3185条查询结果,搜索用时 15 毫秒
81.
持久性有机污染物(POPs)在全球范围内进行远距离传输过程中,土壤既是污染物的主要汇,又是空气中污染物的潜在来源.土气交换过程是POPs环境归宿的重要环节,该交换过程受POPs理化性质、近地面气象条件、土壤理化性质及植被覆盖等因素的影响.对近期报道的POPs土气交换过程影响因素研究进行了综述与展望,列出了研究中涉及的重要模型及公式.环境温度的变化既能改变目标物在气固相之间的分配行为,影响空气中污染物的干湿沉降和气态交换过程,也能够通过近地面温度场的梯度变化影响污染物在土气交换过程中的垂直紊流扩散.此外,近地面水平风速的变化也会影响目标物的在近地面空气中的垂直紊流扩散.土壤有机质含量及种类控制了土壤中POPs的吸附/解吸过程,土壤温度和湿度影响污染物的土气分配系数,土壤矿物组成也会影响污染物吸附和解吸过程.地面植被能够吸收和吸附空气中气态和颗粒态POPs,通过雨水淋刷和枯落物凋落转移到土壤中;植被覆盖可以减少土壤的温度变化,减少土壤中POPs的挥发.尽管近年已经取得丰硕的成果,但在土气交换过程多因素耦合影响量化评估、动态评估POPs在典型场地原位复杂环境下的土气交换通量、在区域尺度量化植被对城市中POPs土气交换的影响等方面有待开展深入研究工作.  相似文献   
82.
本文通过分析深圳大鹏半岛入海河流、近岸表层海水与沉积物的微塑料丰度、形状和成分,结合研究区域的用地空间规划、海洋活动类型、微塑料空间分布特征等信息,探究了大鹏半岛周边陆地和海洋活动对近岸海域次生微塑料季节性分布的复合影响。夏季,大鹏半岛周边入海河流截断面的微塑料丰度为0.30~12.95个/L,平均值为2.53个/L;表层海水的微塑料丰度变化范围为0.02~1.30个/L,平均值为0.27个/L。秋季,入海河流截断面的微塑料丰度为0.10~0.75个/L,平均值为0.36个/L;近岸表层海水的微塑料丰度为0.02~5.24个/L,平均值为0.70个/L。结果表明,夏季,近岸海域微塑料分布主要受到丰水期陆地人类活动的影响,沿河岸的微塑料排放归因于居住用地、物流仓储和工业用地等来源。而在秋季枯水期,陆地和海洋活动的复合影响变得更加突出。值得注意的是,除陆地人类活动影响外,在近岸海域表层水体和沉积物中观察到的微塑料丰度升高还与渔业和航运活动的排放有关。此外,这些微塑料更有可能在近岸沉积物中积累。  相似文献   
83.
本研究在我国南方海水养殖海湾——茅尾海开展了冬、夏两季的微塑料表面细菌群落结构特征分析。茅尾海海域微塑料颗粒表面细菌群落主要包括变形菌门(30.52%~74.98%)、拟杆菌门(10.14%~58.64%)和放线菌门(1.21%~5.16%)等;在属水平上检测到了具有致病风险的弧菌属(0.21%~3.26%)、假单胞菌属(0.02%~2.88%)、不动杆菌属(0.07%~0.95%)和链球菌属(0.09%~0.86%)。微塑料表面附着的细菌种类与表层水体的重合率高于75%,但是二者细菌群落结构差异显著。细菌群落多样性分析结果显示,微塑料表面细菌群落的物种丰富度低于海水环境中的细菌群落,中等盐度(11.2~21.4)海域微塑料表面细菌群落的物种丰富度显著高于其他盐度海域(6.5~8.2,26.7~29.6);夏季微塑料表面细菌群落物种丰富度与均匀度整体高于冬季。茅尾海不同盐度海域微塑料表面附着的细菌群落结构差异明显,并与周围海水中的细菌群落结构显著不同。养殖水体是微塑料表面附着菌群的重要来源,而温度和盐度是影响微塑料表面细菌群落结构特征的主要因素,微塑料表面细菌群落中存在潜在致病菌。  相似文献   
84.
高三笑  傅敏  匡雪  康含  杨悦 《环境工程学报》2022,16(8):2502-2509
以垃圾渗沥液中的主要污染物冰乙酸、正丁酸、正己酸和氨组成的混合物为处理对象,采用微纳米气泡联合紫外灯活化过硫酸盐法处理模拟垃圾渗沥液,考察了反应时间、过硫酸钾投加量、pH、紫外灯功率、微纳米气泡进气量对污染物去除效果的影响。结果表明:微纳米气泡对紫外灯活化过硫酸盐法有显著的协同作用。当反应时间为180 min、过硫酸钾投加量为4 g·L−1、pH=6、紫外灯功率为10 W、微纳米气泡进气量为30 mL·min−1时,污染物的去除效果最佳,COD去除率为60.68%,TOC去除率为48.05%,氨氮去除率为42.1%。自由基淬灭实验结合EPR表征结果表明,羟基自由基和硫酸根自由基为降解过程中主要的活性物质。溶液中无机碳含量增加,说明废水中有机物分解为二氧化碳和水。  相似文献   
85.
张紫涵  代嫣然  梁威 《环境工程学报》2021,15(12):3916-3923
采用吸附效果较好的火山石和炉渣作为填料,构筑了3个室内滤坝小试系统,研究了不同的基质组合配置对滤坝净化污染物的影响.3种不同的基质组配分别方式为:火山石和炉渣均匀混合、沿水流方向先火山石后炉渣和沿水流方向先炉渣后火山石.结果表明,3个滤坝系统对微污染水体具有明显的净化效果,总氮(TN)、总磷(TP)、氨氮(NH3-N)...  相似文献   
86.
固相微萃取技术在我国环境化学分析中的应用   总被引:1,自引:0,他引:1  
固相微萃取技术 (SPME)是 2 0世纪 80年代末发展起来的一种崭新的技术 ,它集采样、萃取、浓缩、解析、进样为一体 ,在我国环境化学分析中 ,SPME和GC、GC/MS等仪器联用分析有机污染物已获得令人满意的结果。同时因其具有简便、快速、灵敏、准确、重现性好、成本低、不使用有机溶剂等优点 ,因而SPME技术将会得到十分广泛的应用  相似文献   
87.
化学絮凝—微电解脱色处理印染废水   总被引:4,自引:0,他引:4  
采用化学絮凝-微电解脱色组合工艺处理扬州彩虹针织集团总厂生产过程中的印染废水,COD去除率达到83%~90%.处理后的出水清澈透明,各项指标均达到GB8978-1996《污水综合排放标准》的二级排放标准。  相似文献   
88.
王芳婷  包科  齐信 《环境工程学报》2023,17(12):3953-3959
塑料污染在环境中具有普遍性,对生态系统具有潜在的风险性,为新兴的全球性环境问题。武汉境内江河纵横、百湖密布,是全球同纬度地区和长江中下游湖泊型湿地的典型代表。调查了武汉湖泊表层水体中微塑料的分布特征,并采用生态风险指数 (RI) 评估了微塑料的生态风险。结果表明,微塑料丰度为2 000~7 733 items·m−3,远城区湖泊表层水体微塑料丰度通常高于城乡结合区湖泊,中心城区微塑料丰度具有显著差异。湖泊中微塑料以纤维状为主,其次是碎片状,大小以<1 mm的小颗粒为主,主要颜色为透明和蓝色,主要成分为聚乙烯 (PE) 、聚丙烯 (PP) 和聚对苯二甲酸乙二醇酯 (PET) 。武汉市典型湖泊表层水体中MPs生态风险指数为601.5~8 954,均属于危险或高危等级,且PE、PP和PET的生态风险指数普遍较高。该研究结果可为城市湖泊中微塑料污染治理提供参考。  相似文献   
89.
为了研究微能耗双罐并联加压控藻船的控藻效果和机理,采用现场围隔试验,研究了加压蓝藻在不同风浪作用下的垂向分布情况、不同水深的光合生产力.结果表明,围隔试验控藻率达到98.7%;加压蓝藻在静水和风浪条件下垂向分布均为表层少下层多,静水中大部分沉淀于水底,悬浮蓝藻只占24.6%,在0.8 m水深、25 cm风浪作用下表层蓝...  相似文献   
90.
黄姜废水的铁炭微电解-混凝预处理研究   总被引:13,自引:0,他引:13  
研究了高浓度黄姜废水的铁炭微电解-混凝工艺,结果表明,在进水pH4.0、停留时间为40min且有曝气条件下,COD去除率达到64.70%,色度去除率为72.22%,废水的BOD/COD值可由0.29提高到0.56,有利于废水的后续生化处理。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号