全文获取类型
收费全文 | 981篇 |
免费 | 525篇 |
国内免费 | 269篇 |
专业分类
安全科学 | 87篇 |
废物处理 | 18篇 |
环保管理 | 74篇 |
综合类 | 829篇 |
基础理论 | 546篇 |
污染及防治 | 144篇 |
评价与监测 | 63篇 |
社会与环境 | 4篇 |
灾害及防治 | 10篇 |
出版年
2024年 | 94篇 |
2023年 | 121篇 |
2022年 | 131篇 |
2021年 | 108篇 |
2020年 | 85篇 |
2019年 | 79篇 |
2018年 | 70篇 |
2017年 | 61篇 |
2016年 | 59篇 |
2015年 | 82篇 |
2014年 | 108篇 |
2013年 | 75篇 |
2012年 | 64篇 |
2011年 | 57篇 |
2010年 | 56篇 |
2009年 | 75篇 |
2008年 | 48篇 |
2007年 | 49篇 |
2006年 | 43篇 |
2005年 | 49篇 |
2004年 | 26篇 |
2003年 | 20篇 |
2002年 | 29篇 |
2001年 | 21篇 |
2000年 | 12篇 |
1999年 | 5篇 |
1998年 | 12篇 |
1997年 | 13篇 |
1996年 | 28篇 |
1995年 | 26篇 |
1994年 | 14篇 |
1993年 | 12篇 |
1992年 | 2篇 |
1991年 | 11篇 |
1990年 | 10篇 |
1989年 | 14篇 |
1988年 | 1篇 |
1987年 | 2篇 |
1986年 | 3篇 |
排序方式: 共有1775条查询结果,搜索用时 46 毫秒
341.
为快速、同步检测分析磺胺类抗生素,有效削减并控制水体中磺胺类上抗生素含量,基于已有检测仪器和分析测试方法,建立了一种用于同时测定水体中8种磺胺类抗生素(磺胺氯哒嗪、磺胺间二甲氧嘧啶、磺胺二甲基嘧啶、磺胺甲恶唑、磺胺喹恶啉、磺胺甲氧哒嗪、磺胺甲噻二唑、磺胺吡啶)残留的固相萃取-液相色谱-三重四极杆串联质谱检测方法;在检测过程中,调节水样的pH为3,用HLB固相萃取柱进行净化、富集,在40 ℃条件下用氮吹浓缩吹干,用超纯水复溶至1 mL;以0.1%甲酸水溶液和0.1%甲酸乙腈溶液作为流动相,使用Phenomenex Kinetex F5 色谱柱(50 mm×3.0 mm, 2.6 μm)进行分离,在多反应监测模式(MRM)下对样品进行定量、定性分析。结果表明:8种磺胺类抗生素线性关系良好,且拟合度均大于0.999 0;检出限为0.1~0.5 μg·L−1,定量限为0.5~2.0 μg·L−1;质量浓度为1、5、50 μg·L−1的混标溶液的加标回收率分别为78.85%~127.96%、76.69%~114.38%和73.55%~125.92%, 相对标准偏差均在15%以内。该方法快捷、高效、灵敏,能够满足水中磺胺类抗生素的定性、定量检测,可为我国检测方法标准体系的建设提供参考。 相似文献
342.
以水玻璃、硫酸铝和硫酸钛为原料,采用共聚法制备了聚硅酸硫酸铝钛(PATS)混凝剂。考察了混凝剂处理模拟低浊水的效能和出水残留铝含量,并且运用FTIR、XRD和SEM对混凝剂的结构形貌进行了表征。研究发现,当Al/Ti摩尔比为10:1,(Al+Ti)/Si摩尔比为1:2,水体pH为7~9,水体温度为10℃时,合成的PATS混凝剂对模拟低浊水的混凝性能最好,残留铝含量较低,当该混凝剂投量为0.10 mmol·L-1(以金属离子计)时,余浊和残留铝含量分别可达到0.36 NTU和0.022 mg·L-1。结果表明, PATS中存在铝、钛及其水解产物与硅发生相互作用生成的Al-O-Si键和Ti-O-Si键。PATS不是几种原料的简单混合,而是一种无定形共聚物。与聚合氯化铝、聚硅酸硫酸铝相比,PATS具有更好的混凝效果和更低的残留铝含量。 相似文献
343.
TiO2光催化技术可将水体中的抗生素氧化为CO2、H2O和其他无毒的无机物,实现高效氧化处理的目的,且具有发展太阳光的潜力。以TiO2粉末为前驱体,采用水热法制备了未掺杂及掺杂不同比例Ni2+的TiO2纳米管,并对样品进行了SEM、TEM、XRD和UV-Vis等表征。以氙灯(250~800 nm)为光源、强力霉素为降解对象,模拟测试样品在日光下光催化降解抗生素的活性。结果表明:TiO2粉末经水热反应后,生成了分散性较好的具有均匀中空管状结构的TiO2纳米管,管壁多层且两端开口,Ni2+的掺杂不会对TiO2纳米管的微观形貌和晶型结构产生影响;水热法合成的TiO2纳米管的N2吸附-脱附等温线为典型的IUPAC IV型等温线,BJH孔径分布曲线表明生成的TiO2纳米管的内径比较均一;与TiO2粉末相比,未掺杂和掺杂Ni2+的TiO2纳米管具有较好的光吸收能力,随离子掺杂量增加,样品的吸收边出现了明显的红移;当Ni2+掺杂量为1%时,制得的材料对水中强力霉素的光催化去除效果最好,在氙灯光源下反应120 min,对强力霉素的降解率高达78.1%。 相似文献
344.
发展与环保的矛盾,是困绕我国众多企业的一大难题。解决地好,企业长足发展,解决不好,企业停产关门。而在山东鲁抗医药集团有限公司,这个难题就被很好的解决了。鲁抗公司在十几年前,还只是一家不起眼的地方小药厂,如今已成为总资产22亿元,员工7000余人的国有大(一)型企业,挤身我国制药行业前列。与此同时,鲁抗先后被评为“全国工业污染普查工作先进企业”、“山东省医药环保先进单位”,1998年通过了省环保局组织的污水达标排放验收。鲁抗的成功之道,究竟是什么?一作为我国重要的抗生素药生产基地,鲁抗始终抱定这样… 相似文献
345.
346.
针对常规水处理工艺难以去除原水中低浓度有机氯农药的问题,采用新型高级氧化技术——紫外(UV)活化过硫酸钠(PS)去除水中有机氯农药三唑酮(triadimefon,TDF),分别研究了TDF初始浓度、PS浓度、初始pH、氯离子浓度以及腐殖酸(HA)浓度对TDF降解效果的影响。结果表明:随着TDF浓度的增加,其去除率逐渐降低;PS浓度从100 μmol·L-1增到250 μmol·L-1,TDF去除率可以提高6.83%;初始pH为5时,TDF的去除率最大;氯离子的存在会抑制TDF降解;存在HA时会降低TDF去除效果。当TDF浓度为200 μg·L-1、PS投加量为250 μmol·L-1、pH为5、温度为(25±2) ℃和反应时间为600 s的反应条件下,TDF的去除率达到99.83%。相比于单独采用UV辐照和PS氧化技术,UV/PS技术对TDF的去除率分别提高了64.2%和86.22%。TDF的降解机制是紫外直接光解和以硫酸根自由基(SO4?-)为主的自由基氧化的共同作用。 相似文献
347.
西溪湿地土壤有机氯农药残留特征及风险分析 总被引:5,自引:0,他引:5
以首个国家湿地公园--西溪国家湿地公园为研究区域,对该地区土壤中有机氯农药HCH和DDT的残留特征和影响因素进行研究,探讨污染物的潜在来源,并对其生态风险进行分析.结果表明,西溪湿地土壤中HCH和DDT均有检出,∑HCHs平均含量为18.44ng·g-1,∑DDTs平均含量为20.80 ng·g-1,二者在土壤中的残留差异不是很明显.HCH在柿园、竹园、芦苇滩地、菜地和其他5种利用类型土壤中的残留差异不大,而DDT在菜地土壤的残留高于其他4种类型.采样点土壤中∑HCHs和∑DDTs含量均低于GB 15618-1995土壤环境质量一级标准,与国内其他地区相比,西溪湿地土壤DDT残留较低,而HCH残留相对较高.生态风险分析显示,西溪湿地土壤中HCH残留对于土壤生物的风险较低,而DDT可能对鸟类和土壤生物具有一定的生态风险. 相似文献
348.
349.
采用气相色谱法研究了35%苄·丁可湿性粉剂中丁草胺在2006年和2007年湖北省、广东省2年两地水稻田土壤和水中的残留降解动态和最终残留量。研究结果表明丁草胺在土壤和田水添加回收率分别为82.78%~93.20%和90.31%~93.51%,丁草胺在稻田土壤和田水中降解动态符合一级动力学指数模型,在湖北省和广东省水稻田土壤中的半衰期分别为3.21~3.83d、2.49~3.66d,水稻田水中的半衰期分别为1.20~1.66d、1.13~1.48d。861g(a.i.)·hm^-2和高剂量1292g(a.i.)·hm^-2两个剂量施药后丁草胺在稻田土壤中的最终残留量为0.0010-0.0029mg·kg^-1。 相似文献
350.
抗生素菌渣堆肥进程中微生物群落的变化 总被引:3,自引:0,他引:3
将青霉素菌渣、林可霉素菌渣与牛粪等原料分别进行好氧堆肥实验,以考察堆肥过程中不同菌渣对微生物群落的影响。在堆制的41d里,根据温度变化分阶段采集堆肥样品,采用稀释倒平板法测定细菌、放线菌和真菌的数量。结果表明,菌渣不同,其堆肥中的微生物群落变化趋势不同。青霉素菌渣堆肥中细菌数量变化趋势为高一低,真菌数量变化趋势为高一低.高,放线菌数量为逐渐增加;林可霉素菌渣堆肥过程中细菌数量变化趋势为低一高一低,放线菌和真菌数量变化趋势为高.低.高。依据真菌菌落形态观察,菌渣堆肥中的真菌种类比对照牛粪堆肥单一,表明两种菌渣对堆肥中的微生物多样性均产生了不利影响。林可霉素菌渣堆肥初始时的细菌数量比对照低1个数量级,放线菌数量在整个堆肥进程中都明显低于对照,堆肥结束时,随着菌渣含量的增加,放线菌数量逐渐下降,高温期真菌数量下降幅度随着菌渣含量增加而加大,表明林可霉素菌渣对细菌、放线菌和真菌均有不同程度的抑制。堆肥化后菌渣中林可霉素残留量的减少表明,在一定条件下堆肥处理可以将抗生素菌渣无害化和资源化。 相似文献