首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2543篇
  免费   330篇
  国内免费   1184篇
安全科学   86篇
废物处理   4篇
环保管理   99篇
综合类   2870篇
基础理论   547篇
污染及防治   174篇
评价与监测   163篇
社会与环境   95篇
灾害及防治   19篇
  2024年   39篇
  2023年   138篇
  2022年   164篇
  2021年   170篇
  2020年   183篇
  2019年   195篇
  2018年   112篇
  2017年   139篇
  2016年   177篇
  2015年   212篇
  2014年   254篇
  2013年   212篇
  2012年   237篇
  2011年   263篇
  2010年   203篇
  2009年   200篇
  2008年   181篇
  2007年   139篇
  2006年   125篇
  2005年   113篇
  2004年   85篇
  2003年   82篇
  2002年   66篇
  2001年   68篇
  2000年   37篇
  1999年   37篇
  1998年   34篇
  1997年   33篇
  1996年   44篇
  1995年   22篇
  1994年   27篇
  1993年   20篇
  1992年   10篇
  1991年   10篇
  1990年   12篇
  1989年   12篇
  1988年   1篇
  1987年   1篇
排序方式: 共有4057条查询结果,搜索用时 78 毫秒
321.
浙江省象山东部的开阔海域接纳沉积了长江和浙北沿岸经济发达地区包括重金属污染物在内的入海物质.为全面了解象山近海沉积物重金属污染状况,基于2017年夏季54个采样点表层沉积物测试资料,分析其中Cr、Cu、Zn、Pb、Hg、As、Cd等7种重金属元素的分布特征、影响因素和主要来源,并应用地质累积指数法和潜在生态风险指数法对重金属元素进行污染状况和生态风险评价.结果表明:研究区Cr、Cu、Zn、Pb、Hg、As、Cd平均质量分数分别为89.860、36.890、108.740、32.150、0.041、6.090和0.134 μg/g,研究区中部和韭山西北侧海域表层沉积物中的重金属含量较高,近岸区域和东南部外海区域含量较低.Cr、Cu、Zn、Pb、Cd受控于粒度和有机质分布,均以陆源输入为主;Hg、As以其他物质来源为主.主成分分析法将全部因子概括为3个主成分.地累积指数评价结果表明,象山近海表层沉积物中Cu和Cd属轻度污染;研究区中部大片区域具有中等潜在生态风险,主要生态风险因子为Hg和Cd.研究显示,象山近海仍以陆源输入型重金属污染物为主,同时受到海洋水动力、理化条件以及人类用海活动的影响.   相似文献   
322.
为研究典型有机污染物在黄河兰州段沉积物的吸附规律及影响,以黄河兰州段的沉积物为供试样品,选择萘(naphthalene)为代表性有机污染物,采用批量试验法研究了污染物萘在黄河沉积物上的吸附动力学、吸附热力学、初始质量浓度、pH、离子强度、粒径等影响因素以及解吸动力学.结果表明:黄河沉积物对萘的吸附动力学更符合准二级动力学模型,且吸附过程主要分为快吸附(0~4 h)和慢吸附(4~8 h)两个阶段,在8 h左右达到平衡;Freundlich模型能较好地拟合热力学吸附特征.在25~45℃的温度范围内,E(吸附平均自由能)为0.288~0.316 kJ/mol(< 8 kJ/mol),吸附过程中,ΔGθ(吉布斯自由能)小于0,ΔSθ(熵变)与ΔHθ(焓变)均大于0,说明萘在黄河沉积物上的吸附是一个自发的混乱度增大的吸热过程,且以物理吸附为主.影响因素分析结果显示,随着沉积物粒径的增大,萘在其上的吸附量逐渐减小;增大吸附体系中的离子强度时,萘在沉积物上的吸附过程受到抑制;当萘初始浓度增大时,吸附量增加;酸性条件抑制吸附过程,碱性环境促进吸附过程;黄河沉积物对萘的解吸量远小于吸附量,存在解吸滞后现象.研究显示,萘在黄河沉积物中的吸附速率受内部扩散、表面吸附和液膜扩散的共同影响,并且吸附过程同时受到沉积物粒径和溶液的pH和离子强度的影响.   相似文献   
323.
为揭示天福庙水库沉积物中磷的形态及空间分布特征,探讨沉积物-水界面磷的释放通量及其主要影响因素,在天福庙水库库区内设立了6个采样点,采用SMT(磷形态标准测试程序)法测量其沉积物中磷的形态组成,对沉积物磷空间分布、间隙水及上覆水PO43-质量浓度变化特征进行了分析,估算了磷释放通量.结果表明:①库区沉积物中TP主要由Ca-P(钙磷)构成,TP在水库库尾和支流入库处具有较高的质量分数,分别为4 904.6、5 015.2 mg/kg.TP、IP(无机磷)、Ca-P时空动态具有一致性,磷矿石灰污染是重要原因.②孔隙水中PO43-质量浓度在沉积物表层1~3 cm内存在很高的峰值,达11.3 mg/L,各采样点均高于上覆水中PO43-质量浓度,存在向上覆水释放PO43-的风险,孔隙水中PO43-质量浓度与TP质量分数及磷形态相关.③采用孔隙水扩散模型法估算PO43-在沉积物-上覆水界面上的释放通量,库区沉积物磷释放通量范围为0.13~3.08 mg/(m2·d),平均值为1.03 mg/(m2·d),处于较高水平.研究显示,磷矿开采是干流沉积物磷来源和形态组成的重要原因,库区磷释放通量与水流扰动密切相关,坝前、支流交汇处、库尾是库区内源磷污染的主要区域.   相似文献   
324.
长江口及邻近海域表层沉积物中氮形态的研究   总被引:1,自引:0,他引:1  
氮是海洋初级生产力和食物链的基础,不同形态的氮具有不同的物理化学性质和生物可利用性。对长江口及邻近海域沉积物不同形态氮的含量及其影响因素的研究可以加深该区域氮生物地球化学循环过程的认识。本研究采用改进分级浸提方法测定了2014年8月长江口及邻近海域表层沉积物中离子交换态氮(IEF-N)、碳酸盐结合态氮(CF-N)、铁锰氧化态氮(IMOF-N)以及有机态和硫化物结合态氮(OSF-N),描绘出研究海域表层沉积物中不同形态氮的分布特征及其影响因素。研究海域中,不同形态氮的分布由于受到不同因素的影响,含量分布和变化特征也有着相应的不同。其中陆源物质输入、沉积物的粒径大小以及海洋生物的丰度影响着IEF-N的分布;而CF-N分布与pH的变化密切相关;IMOF-N的含量受到沉积物氧化还原环境的直接影响;OSF-N则与沉积物来源有关。  相似文献   
325.
本文以昌黎黄金海岸国家级自然保护区的海域为研究区域,分析讨论了沉积物的中值粒径、有机质总量与磷的各种不同赋存形态之间的相关性。结果表明,保护区海域各采样点沉积物的总磷(TP)含量在257.2×10-6~470.2×10-6之间,平均值为282.4×10-6;其中,有机磷(OP)含量为21.0×10-6~191.4×10-6;无机磷(IP)含量为106.2×10-6~214.6×10-6,是保护区沉积物中磷形态的主要赋存形态;铁/铝结合态磷(Fe/Al-P)的含量为17.2×10-6~55.9×10-6;钙结合态磷(Ca-P)含量为71.4×10-6~168.2×10-6,是组成IP的主要赋存形态,Ca-P含量及其所占比例均较高,磷释放风险较小。各磷形态含量的空间分布大体呈西部>中部>东部的趋势。部分距新开口较近的采样点含磷量偏高。北部区域主要受到陆源输入与水动力条件等因素的影响,含磷量偏低。从统计数据特征来看,该海域的沉积物基本没有构成污染。  相似文献   
326.
以2010年中国北极黄河站科学考察从新奥尔松地区采集的2个土壤和8个不同类型的沉积物样品为研究对象,采用分离培养方法及16S rRNA基因序列测定分析可培养细菌的多样性。对从10个站位分离出的343株细菌进行菌落特征分析,选取47株代表性细菌进行16S rRNA基因的分子鉴定并构建系统发育树,结果表明47株细菌归属于4个门,6个纲,18个属和29个种。在属水平上,芽孢杆菌纲细菌的多样性最为丰富,共6个属;在菌株数量上,γ-变形菌纲属于优势类群,共27株,分属于13个种。北极新奥尔松地区可培养细菌在海洋沉积物、湖泊沉积物、河流沉积物及土壤中的种属构成存在差异,其中海洋沉积物中细菌多样性最为丰富,而湖泊沉积物中细菌多样性次之。  相似文献   
327.
于桥水库沉积物-水界面氮磷剖面特征及交换通量   总被引:6,自引:5,他引:1  
于桥水库是天津市重要的饮用水源地,但近年来呈现富营养化加重趋势,而其内源负荷及污染分布特征尚不清楚.本研究利用Peeper(pore water equilibrium)技术获取沉积物-水界面氮磷剖面特征,分析于桥水库间隙水氮磷分布的空间差异;采集沉积物无扰动柱样分析沉积物中易释放态氮及磷的赋存特征,并利用原柱样静态培养法对其水土界面氮磷交换速率进行估算.结果表明:(1)沉积物中活性磷、氨氮、硝态氮和亚硝态氮的含量分别为0.5~6.5、0.5~10.9、2.2~16.2和0.05~0.6 mg·kg~(-1),在垂直方向随深度增加营养盐含量降低,而在空间分布上差异显著.(2)上覆水中PO_4~(3-)-P和NH_4~+-N质量浓度较低,间隙水中PO_4~(3-)-P和NH_4~+-N质量浓度远大于上覆水,表明于桥水库间隙水具有向上覆水体扩散营养盐的潜力.在垂直方向上间隙水中PO_4~(3-)-P和NH_4~+-N具有在0~5 cm快速增加,之后表现出逐渐降低的趋势.(3)静态释放结果表明,PO_4~(3-)-P和NH_4~+-N从沉积物间隙水扩散至上覆水中,其释放通量分别为1.1~13.3 mg·(m~2·d)~(-1)和20.6~250.5 mg·(m~2·d)~(-1);NO-3-N交换通量在-20.4~33.4 mg·(m~2·d)~(-1)之间,NO_2~--N交换通量在-7.4~0.4 mg·(m~2·d)~(-1)之间.PO_4~(3-)-P和NH_4~+-N为于桥水库主要的沉积物内源向上覆水释放营养盐,总体释放速率在空间上呈现南高北低、淋河口和水坝前较高的释放特征.与类似研究比较可知,于桥水库沉积物-水界面通量相对较高,表明沉积物是于桥水库上覆水营养盐的重要来源.  相似文献   
328.
咖啡因是一种在环境中广泛存在的药物,其在水系环境的迁移和分布主要受到吸附行为的影响.在实验室条件下,近似模拟自然河流水/泥界面,应用中心复合实验设计,考察了温度、pH、有机质含量和转速等对咖啡因吸附的影响;利用实验所得数据,分别拟合和验证了基于线性方程和神经网络的咖啡因吸附模型,通过对比拟合和验证结果得到适用于自然河流的咖啡因吸附模型.实验结果表明,咖啡因在沉积物中的吸附呈现先快速后缓慢的过程,30 h内吸附比例超过90%;咖啡因的吸附是放热反应,低温有利于咖啡因的吸附;而转速增大能促进咖啡因的吸附反应;pH和有机质含量的影响较小.模型模拟结果表明,两种模型均能较好地拟合吸附实验结果,但神经网络模型的拟合程度和精度均优于线性方程模型;且交叉验证结果表明,利用不同组数据进行训练,神经网络模型均取得了优于线性方程的拟合结果.因此,在所考察的因素和浓度范围内,神经网络模型较好地预测了自然河流沉积物中咖啡因的吸附行为.  相似文献   
329.
改性膨润土和沉水植物联合作用处理沉积物磷   总被引:1,自引:0,他引:1  
首次将改性膨润土(modified bentonite,MB)作为原位吸附材料与沉水植物苦草(Vallisneria spiralis,V.spiralis)联合处理沉积物磷.研究结果表明,MB可以促进沉水植物V.spiralis的生长, V.spiralis可能通过根系分泌作用促进溶磷或是通过促进根际微生物群落的P代谢活性增加沉积物中的生物可利用性P含量.MB与沉水植物V.spiralis对沉积物P的联合作用效果优于MB和沉水植物V.spiralis单独作用之和.厚度5cm MB和V.spiralis联合作用对沉积物TP,IP,OP,Fe/Al-P和Ca-P的去除率可达59.8%,57.1%,67.8%,66.7%和44.7%.微生物试验结果表明,厚壁菌门Erysipelotrichaceae科的菌属PSB-M-3是联合组相比单一V.spiralis组或单一MB组微生物群落P代谢功能增强的主要贡献者.本研究还首次发现了Erysipelotrichaceae科微生物可作为沉积物中潜在的除磷菌.研究结果表明MB和沉水植物联合控制沉积物磷技术可进一步应用到富营养化湖泊沉积物控制工程.  相似文献   
330.
海州湾秋季沉积物磷的形态分布及生物有效性   总被引:1,自引:0,他引:1  
采用改进的连续提取法(SEDEX法)对2016年秋季(10月)海州湾的表层和柱状沉积物进行磷形态测定,研究不同形态磷的分布特征并分析其生物有效性.结果表明:表层沉积物样品总磷的含量为0.340~0.445mg/g,无机磷的含量为0.271~0.350mg/g;柱状沉积物中总磷的含量为0.367~0.614mg/g,无机磷的含量为0.302~0.443mg/g.总磷中以无机磷为主要赋存形态,无机磷中又以原生碎屑磷为主,各形态磷的含量大小顺序为;总磷(TP) > 无机磷(IP) > 原生碎屑磷(DAP) > 自生钙结合态磷(ACa-P) > 有机磷(OP) > 不稳态磷及铁结合态磷(Fe-P).通过对磷的生物有效性研究发现,本次调查海域表层沉积物中的生物有效磷(BAP)含量为0.069~0.143mg/g,在TP中所占的百分比为19.44%~32.66%,平均值为24.17%;柱状沉积物的BAP含量为0.062~0.217mg/g,在TP中所占的百分比为16.11%~43.54%,平均值为30.77%,磷的释放风险较小.沉积物各形态磷与粒径的相关性结果显示,在柱状沉积物中,Fe-P、OP和ACa-P与细粘土、粗粘土和细粉砂为正相关性,而与粗粉砂、细砂和中砂则为负相关性,DAP则主要与粗粉砂、细砂和中砂表现出了极显著正相关性,与细粘土、粗粘土和细粉砂表现出显著负相关性,BAP与颗粒物粒径的相关性则具有一定的差异性,具体表现在不同粒径组成和平面分布上.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号