排序方式: 共有77条查询结果,搜索用时 15 毫秒
41.
研究了不同时空条件下噬藻体的分布与效力的变化.2001年8~11月共采集了18个水样,对14种藻进行直接感染,从其中的5个水样中分离到了噬藻体(蓝藻病毒),它们主要来源于降温以前富营养化池塘的水样,同时分离得到了4株溶藻细菌.在接受直接感染的14种藻中,聚球藻、组囊藻、微囊藻、织线藻、鱼腥藻7120、衣藻及小球藻为敏感种类,而螺旋藻、念珠藻、鞘丝藻、颤藻、鱼腥藻595、鱼腥藻1444、栅藻则为不敏感种类,敏感种类中织线藻受到噬藻体的感染,聚球藻、微囊藻和织线藻受到溶藻细菌的溶解.从富营养化的池塘采集的水样溶藻能力最强,其次为清水(自来水源)池塘,而大中型湖泊与河流水样的溶藻效果最差.随着温度的降低,水样的感染能力下降. 相似文献
42.
当前,蓝藻水华时常爆发,其中铜绿微囊藻(Microcystis aeruginosa)是我国蓝藻水华的典型代表.微生物控藻技术具有高效、生态安全性好、原位修复等特点,近年来已经成为治理蓝藻水华的主要手段.本文通过搭建芦苇湿地试验装置,模拟太湖近岸水域原生环境,以水生植物控藻与溶藻细菌胶囊强化相结合的方式对Microcystis aeruginosa进行生态学-微生物操控试验.从藻胆蛋白、抗氧化系统、膜脂值活性等方面的研究来探究控藻系统的溶藻机制,并通过高通量技术与主成分分析来探索溶藻细菌与藻之间的群落动态关系.试验结果表明,原位藻类控制系统效率高,14 d溶藻率为(88.74%±1.10%),其中溶藻细菌胶囊占主导地位,植物修复为辅.通过对藻胆蛋白的破坏和藻类抗氧化系统的摧毁来导致藻类膜结构的受损,胞内物质流出而死亡.利用高通量技术发现,溶藻细菌胶囊所包埋的菌株Bacillus sp.HL在微生物体系中成为优势菌种.主成分分析结果表明高效原位控藻体系促进了藻体内ROS水平,增强了藻的Zeta电位和抗氧化酶活性,从而抑制了Microcystis aeruginosa的生长. 相似文献
43.
溶藻细菌及其分子生物学研究进展 总被引:4,自引:0,他引:4
溶藻细菌在"水华"防治中的作用和潜力,已广受关注.本文从系统分类、溶藻机制和杀藻物质等方面对已报道的溶藻细菌的研究结果进行了归纳和总结,并对近年来在细菌溶藻研究中应用的分子生物学技术,包括PCR、核酸探针和全细胞杂交、变性梯度凝胶电泳(DGGE)等,以及溶藻机制研究巾的分子生物学进展进行了综述,最后提出了在溶藻细菌的研究和应用中值得注意的几个问题.表1参66 相似文献
44.
45.
溶藻细菌L7对富营养化水体藻类群落的影响 总被引:1,自引:0,他引:1
将水华鱼腥藻和溶藻细菌L7按不同比例接入优势种为拟柱胞藻的富营养化供试原水,观测藻类群落结构和拟柱孢藻藻丝长度,研究溶藻细菌L7对富营养化水体藻类群落的影响。结果表明:溶藻细菌L7初始密度为9.45X10 7CFU/mL时,处理的拟柱孢藻细胞密度显著低于对照,实验开始8 d后,Shannon-Wiener指数分别由0.53和0.69升高至3.18和3.74,Pielou均匀度指数分别由0.09和0.12升高至0.73和0.82。在本研究条件下,高密度的溶藻细菌L7能够抑制优势种的生长,增加生物多样性和均匀度,具有调节藻类群落结构的作用。额外的水华鱼腥藻的加入,会对溶藻细菌L7调节藻类群落结构的作用强度产生干扰。 相似文献
46.
为使溶藻细菌Chryseobaterium sp.S7在水体修复工程中得到科学应用,在单因素实验的基础上,确定细菌和Chl.a浓度的响应面中心点,以蓝绿藻Chl.a去除率为响应值,以细菌和Chl.a浓度为影响因素,采用Central-Composite响应曲面分析法,研究了影响Chryseobaterium sp.S7溶藻效应的2个重要因素的交互作用,得出Chl.a去除率与细菌初始浓度和水体Chl.a浓度的二次多项式模型。该模型具有显著性高(P<0. 01),模型拟合度好(R~2=0. 9071)等优点。当细菌初始浓度为9. 46×10~6cell/L、Chl.a初始浓度为175. 3 mg/m~3时,Chl.a理论去除率最大(83. 53%)。水槽实验也表明该模型具有一定实用性。针对不同水华水体,可以根据本文建立的模型确定细菌投放量,达到最优控藻效果。研究结果可为应用Chryseobaterium sp.S7控制蓝绿藻引起的水华污染提供参考。 相似文献
47.
从太湖流域宛山荡蓝藻爆发地底泥样品中分离岀1株溶解铜绿微囊藻的细菌,编号为WS8。生理生化鉴定及16S rDNA序列分析结果表明,该菌与Bacillus amyloliquefaciens (GenBank登录号为KC441776)的16S rDNA序列相似度为99%。通过液体感染法(与铜绿微囊藻共培养)考察了该菌溶藻特性及溶藻机制。结果表明,溶藻菌WS8具有显著的溶藻效果。稳定期菌液溶藻效果最强,4 d溶藻率高达91.7%;菌液溶藻效果随投加比例的增加而增强,但投加量5%与10%处理组溶藻效果无显著差异,4 d溶藻率分别为91.3%及93.3%;菌液对高浓度水华藻的抑制作用较迟滞,对低浓度水华藻的抑制作用迅速,但4 d溶藻率并无显著差异;菌液对温度及pH适应能力较强,具有较好的工程应用价值,在30℃,pH 8时溶藻率最高。溶藻菌WS8的溶藻机制可归纳为:菌株分泌具有溶藻活性的胞外活性物质,该活性物质会引起藻细胞丙二醛含量升高,对藻细胞产生氧化损伤,破坏藻细胞保护酶,从而降低藻细胞生物量。 相似文献
48.
49.
绿脓杆菌(Pseudomonas)上清过滤液可迅速溶解小胶鞘藻(Phormidlum tenue).含有细茵上清过滤液5%以上的M-11培养液,可明显抑制小胶鞘藻的增殖.在25-35 ℃,pH 7-9的条件下,溶藻效果最好.较之对数生长期,细菌上清过滤液对恒定期和衰亡期的小胶鞘藻更易溶解. 相似文献
50.
以太湖金墅港水源地蓝藻为研究对象,通过高通量测序技术分析水体和底泥中细菌的群落组成,同时检测常规水质理化因子,分析其对蓝藻变化的影响。结果显示,金墅港水体和底泥中细菌群落主要门组成相似,随着季节的变化水体中蓝藻群落结构的变化较大,底泥中蓝藻的群落结构变化较小;蓝藻门主要的优势科是微囊藻科(Microcystaceae)和聚球藻科(Synechococcales),蓝藻爆发期主要是微囊藻;影响蓝藻群落结构变化的主要环境因子是水温、溶解氧、总氮和总磷;金墅港全年共检测到12个属的溶藻细菌,主要为假单胞菌(Pseudomonas)和黄杆菌(Flavobaeteria),溶藻菌在细菌的占比与蓝藻相反,蓝藻水华爆发时比例较低,蓝藻水华爆发前期、末期则比例较高。此外还发现随着气温升高,底泥中蓝藻的繁殖优先于水体中蓝藻的繁殖;蓝藻爆发期,水体中蓝藻比例较高时会出现向底泥中迁移富集的现象。 相似文献