首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2472篇
  免费   181篇
  国内免费   356篇
安全科学   1117篇
废物处理   142篇
环保管理   140篇
综合类   1229篇
基础理论   106篇
污染及防治   195篇
评价与监测   45篇
社会与环境   5篇
灾害及防治   30篇
  2024年   14篇
  2023年   62篇
  2022年   101篇
  2021年   86篇
  2020年   63篇
  2019年   71篇
  2018年   79篇
  2017年   93篇
  2016年   80篇
  2015年   109篇
  2014年   193篇
  2013年   135篇
  2012年   121篇
  2011年   137篇
  2010年   95篇
  2009年   112篇
  2008年   111篇
  2007年   109篇
  2006年   134篇
  2005年   104篇
  2004年   90篇
  2003年   94篇
  2002年   77篇
  2001年   95篇
  2000年   89篇
  1999年   81篇
  1998年   72篇
  1997年   77篇
  1996年   63篇
  1995年   65篇
  1994年   48篇
  1993年   40篇
  1992年   37篇
  1991年   25篇
  1990年   22篇
  1989年   24篇
  1986年   1篇
排序方式: 共有3009条查询结果,搜索用时 15 毫秒
721.
分别在桨叶式干化机和热重仪上进行污泥干化和燃烧试验,研究了污泥干化特性和污染物排放特性,并对污泥的燃烧特性进行分析。结果表明,污泥干化过程分为黏稠区、粘滞区和颗粒区3个阶段。干化过程排放的污染气体有氨气、氯化氢、氟化氢、氰化氢、甲烷和挥发性有机酸等,其中氨气为主要污染气体。经冷凝吸收和活性炭吸附处理后,各种污染气体浓度均显著降低,其中氨气去除率最高,达97.04%。污泥干化冷凝液的BOD5和COD质量浓度分别为4 040、8 510mg/L,氨氮的质量浓度为1 025mg/L,pH为9.84,属于高浓度有机废水。污泥的燃烧过程可以分为3个失重阶段:水分析出阶段(50~150℃),挥发分燃烧阶段(150~450℃),固定碳燃烧阶段(450~650℃)。分别用Kissinger法和Ozawa法计算挥发分燃烧阶段和固定碳燃烧阶段的活化能和动力学方程,挥发分燃烧阶段的活化能低于固定碳燃烧阶段,表明挥发分燃烧阶段污泥更易燃烧。污泥的燃烧过程在650℃时基本完成,因此实际工程应用中,设计干化污泥的焚烧温度在750℃比较合理。  相似文献   
722.
为探究易自燃煤在常温条件下的氧化特性,自行设计煤常温封闭氧化实验装置,采用实验研究与回归分析2种方法,分析易自燃煤发生氧化反应的气体变化过程,探究3种粒径煤样在20 ℃有限空间内的耗氧与产气特征。结果表明:易自燃煤样在16 d常温封闭氧化过程中,容器内O2体积浓度呈指数衰减、CO和CO2体积浓度呈指数增长的变化规律;在0.06~0.83 mm范围内,粒径越大,易自燃煤耗氧速率越大,CO和CO2产生速率则先增大后减小;介于中间的粒径为0.13~0.25 mm易自燃煤氧化反应最强烈,更容易发生氧化。研究结果对揭示生产环境温度下煤粒粒径对煤自燃的影响有一定的意义。  相似文献   
723.
运用FDS软件对外墙保温材料竖向燃烧的发展规律进行了研究.根据具体的工程参数,对挤塑聚苯板、模塑聚苯板和聚氨酯三种常用外墙可燃保温材料的燃烧参数进行设定,分别选取窗口火、墙角火两种情况进行数值模拟与分析.模拟结果显示:火焰的蔓延高度随时间按照y=at2+bt+c的关系变化,而火焰前锋则以vp=1/(α+βt)的速度竖向蔓延.  相似文献   
724.
725.
疏水性有机污染物(HOCs)是环境中具有较大的辛醇/水分配系数(〖WTBX〗Kow〖WTBZ〗)的一类持久性有机污染物(POPs),吸附解吸过程是环境中HOCs迁移转化的重要途径之一。煤是近年来发现的在土壤及沉积物中非线性吸附特征的重要吸附剂之一,通过阐述原煤及富碳沉积物对HOCs吸附解吸机理,并重点分析影响原煤及富碳沉积物对HOCs吸附解吸过程的因素,包括吸附剂和吸附质本身,pH值、盐度和离子强度等环境因子,试途探究煤对HOCs吸附解吸的本质。由于煤的有机质含量、有机碳组成和空间结构等物理化学性质都明显不同于天然土壤和沉积物,因而对HOCs的吸附解吸过程也具有特殊性(如吸附过程一般为非线性,解吸过程的滞后性)。有关煤对HOCs的吸附解吸机理在微观分子角度的探讨、煤与吸附解吸过程中其他影响因子对反应体系的影响、煤对HOCs降解的环境风险评价等的研究还较少,今后需加强对这些方面的研究  相似文献   
726.
典型农药废盐热处理特性及适用性   总被引:1,自引:0,他引:1       下载免费PDF全文
随着我国农药行业的迅速发展,农药废盐的管理和无害化处置已经成为亟待解决的环境问题.为了解决农药废盐热处理适用性的问题,推进废盐热处理工业化进程,选择盐城某企业典型农药废盐开展热重试验和动力学模型研究,分析废盐的热处理特性;基于热重试验和动力模型获取的优化参数,进一步利用管式炉模拟试验研究循环流化床焚烧炉处置废盐的可行性.结果表明:该农药废盐热解和燃烧的失重过程相似,在升温过程中一直处于缓慢失重状态,但均只有一个明显的失重阶段.其中,热解的失重阶段为170~298℃,700℃时减重率达到84.08%,燃烧的失重阶段为194~315℃,700℃时减重率达到81.45%,为了使废盐充分反应,根据热重结果确定热处理温度为350℃.热处理动力学分析表明,燃烧和热解在失重阶段反应机理相同,氧气的存在可以促进废盐的热处理过程,确定了热处理的组分为空气组分,该农药废盐属于低热值成分复杂的固体废物.在上述条件下,利用管式炉模拟试验进一步优化了废盐的热处理条件为温度350℃、停留时间45 min、空气组分、空气流量40 mL/min.对热处理后的残留物及烟气进行GC/MS分析发现,热处理法可有效降低废盐中有机污染物含量,烟气中有害物质以苯系物为主,含有少量氯苯及氯代烃类有机物.研究显示,经过管式炉热处理试验后,废盐中有机污染物的去除率达82.93%,可以有效降低有机污染物含量,从而验证了该类废盐热处理的适用性.   相似文献   
727.
新型CuMn/TiO2苯类催化燃烧催化剂的研制及活性实验   总被引:1,自引:0,他引:1  
采用浸溃法制备了CuMn/TiO2新型甲苯燃烧催化剂,其活性明显优于传统CuMn/γ-Al2O3和Cu-Mn复合氧化物催化剂.研究发现,载体TiO2自身有一定催化活性,而γ-Al2O3则几乎没有活性;TiO2与Cu-Mn之间的协同作用更提高了新型催化剂的活性.XRD、LRS结果显示,CuMn/TiO2催化剂的主要活性相为铜锰尖晶石(CuMn2O4),它的存在是CuMn/TiO2催化活性优良的另一个主要原因.考察了Cu-Mn负载量、铜锰比和焙烧温度对催化剂活性的影响,CuMn/TiO2下对甲苯的去除率达95%以上时催化床层温度为215℃,比CuMn/γ-Al2O3和Cu-Mn复合氧化物对甲苯去除率达95%时分别下降了30℃、50℃左右.  相似文献   
728.
基于WRF-Chem模型,结合气象要素,从PM2.5浓度的消减量及时空变化特征等方面模拟分析了煤改电政策实施前后京津冀地区采暖期(2018年11月~2019年3月)PM2.5的排放变化.结果表明,WRF-Chem模型很好地模拟了京津冀地区PM2.5浓度变化,北京、天津和石家庄模拟值与观测值的相关系数分别为0.66、0.66和0.52,表现出良好的相关性.煤改电政策的实施对京津冀重点地区PM2.5减排效果明显,PM2.5日均减少量分布在0.2~6.1μg/m3,减少比例分布在1.2%~7.8%.PM2.5小时均值变化显示,2018年12月PM2.5减少量分布在0.4~8.3μg/m3,减少比例分布在2.3%~7.7%.其中,北京大兴区减排量达8.3μg/m3,天津地区减排比例达7.7%.在特殊气象条件下,煤改电政策影响范围可扩散至山东、江苏、河南北部以及山西西部,PM2.5小时均值减少量最大超过50μg/m3.  相似文献   
729.
生物法联合热力燃烧工艺处理鱼粉加工废气工程应用研究表明,在4个月的试运行过程中该脱臭系统表现出了良好的稳定性和高效性。由生物洗涤塔和生物滴滤塔组成的生物脱臭系统独立运行时,氨气去除率稳定在90%以上,硫化氢的去除率可达95%。废气进一步经锅炉热力燃烧处理后其臭气浓度指标大幅降低。当地环保监测部门的检测结果表明,鱼粉加工废气经生物法联合锅炉热力燃烧处理后完全可以实现达标排放。该废气处理组合工艺结合了生物脱臭技术设备简单、停留时间短、处理效率高的优点和锅炉热力燃烧除臭效果好的优点,具有良好的发展前景和工业化应用潜力。  相似文献   
730.
在石油企业生产加工过程中,生产装置的开停车、正常生产以及紧急事故情况下,需及时排放一些多余的或不平衡的工艺气体,以确保整个生产系统压力平稳、生产稳定运行,火炬是不能缺少的瓦斯气体排放装置,是事故状态下重要的安全保护措施。若出现事故时,泄漏的气体燃烧会产生大量的热,对火炬周围的操作人员、设备以及工艺装置带来严重的危害。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号