首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   26篇
  国内免费   34篇
安全科学   26篇
废物处理   2篇
环保管理   10篇
综合类   118篇
基础理论   18篇
污染及防治   17篇
评价与监测   4篇
社会与环境   24篇
灾害及防治   20篇
  2024年   3篇
  2023年   9篇
  2022年   9篇
  2021年   12篇
  2020年   11篇
  2019年   6篇
  2018年   4篇
  2017年   10篇
  2016年   7篇
  2015年   11篇
  2014年   10篇
  2013年   10篇
  2012年   21篇
  2011年   14篇
  2010年   17篇
  2009年   8篇
  2008年   11篇
  2007年   6篇
  2006年   11篇
  2005年   7篇
  2004年   7篇
  2003年   2篇
  2002年   4篇
  2001年   4篇
  2000年   4篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   3篇
  1994年   1篇
  1992年   3篇
  1991年   5篇
  1990年   2篇
  1989年   1篇
排序方式: 共有239条查询结果,搜索用时 15 毫秒
51.
隧道爆破振动影响因素的灰色关联分析   总被引:1,自引:1,他引:0  
为优化隧道爆破方案,降低爆破振动危害,采用灰色关联分析法(GRA)对爆破振动的影响因素进行分析。首先确定振动速度、主振频率和振动持续时间作为系统特征变量,确定总药量、最大段药量、掏槽孔最大段药量、雷管段数、爆心距、最小延期间隔时间、临空面数等作为相关因素变量;再结合厦门某隧道爆破实测数据,进行灰色关联计算;然后对计算结果进行排序和优势分析,得到爆破振动影响因素的主次顺序,其中准优因素为爆心距,可控准优因素为雷管段数和掏槽眼最大段药量;最后对隧道爆破参数进行优化,测点爆破振速由1.2 cm/s减小到0.74 cm/s,降振率达38.3%。结果表明,采用GRA确定爆破振动主要影响因素,为有效控制爆破振动提供理论依据。  相似文献   
52.
高分辨率土壤重金属污染绘图(HRMMs)有助于准确识别需要进行风险管控或修复的区域.传统HRMMs基于网格模式土壤采样,开展化学分析并采用地质统计插值方法绘制污染分布地图,成本高、速度慢,且不适合高度异质性污染场地.该研究提出了一种通过多元非线性回归改善便携式X射线荧光分析(PXRF)数据,采用改进的PXRF数据进行协同克里金插值,以及HRMMs地图绘制和重金属污染分布预测的新方法.为了支持模型的建立和验证,选择我国西北某锰、锌污染场地开展研究.结果表明:(1)引入PXRF数据作为协同克里金插值的辅助变量能有效提高插值精度,而校正的PXRF数据可进一步提高空间刻画精度.重金属Mn和Zn的校正PXRF协同克里金插值较原始PXRF协同克里金插值的平均误差分别降低了4.5%和78.2%.(2)主变量点位密度的变化会改变校正后PXRF协同克里金插值的精度.以Zn为例,当主变量点位密度大于4个/(104 m2)时,校正后的PXRF协同克里金插值的精度显著降低.(3)增加辅助变量点位密度可显著提高协同克里金插值精度.当辅助变量点位密度增至7个/(104 m2  相似文献   
53.
基于成都市2017年10~12月逐时的“干”气溶胶散射系数和吸收系数观测数据,结合该时段同时次的能见度(V)、相对湿度(RH)以及二氧化氮(NO2)监测资料,利用“光学综合法”计算气溶胶散射吸湿增长因子,并探究了气溶胶散射吸湿增长因子单变量f(RH)模型的适用性及其改进方案.结果表明:幂函数、二次多项式、幂指函数形式的f(RH)模型在低RH条件下(RH<85%)均能很好地模拟气溶胶散射吸湿增长因子随RH的变化特征,但在高RH条件下(RH>85%)的模拟值会出现较大的偏差.黑碳质量浓度(CBC)是影响气溶胶散射吸湿增长因子的另一关键变量,二者之间满足非线性关系.以RH和CBC为自变量构建了气溶胶散射吸湿增长因子双变量f(RH,CBC)模型,模型计算值和实测值之间的决定系数R2为0.763,平均相对误差MRE为14.28%.双变量模型f(RH,CBC)的应用显著改善了气溶胶散射消光系数的模拟效果.  相似文献   
54.
湖泊水质参数空间优化估算的原理与方法   总被引:14,自引:1,他引:13       下载免费PDF全文
地统计学是近几十年发展起来的一门处理空间数据的数学方法,在地学方面的应用已日趋成熟.近年来,环境学的研究开始借鉴其理论,开辟了环境学研究的新方向.本文着重阐述了区域化变量理论和克立格法在湖泊水质参数分析研究中的应用,并对湖泊水质参数空间优化估算的方法进行了探讨.  相似文献   
55.
故障树可视化分析系统   总被引:2,自引:0,他引:2  
论述了自行研制设计的可视化故障树分析系统的功能及程序结构与设计原理。该系统由故障树生成、故障树分析计算、文件输出和系统管理 4个模块组成 ,可使故障树生成与分析变得非常直观而简便 ,只需用鼠标在屏幕上绘制出故障树图 ,系统就能自动识别并进行定性与定量分析。  相似文献   
56.
入河排污口是污染物进入生态环境的最后一道关口,预防超标排放是改善流域生态环境质量的基础.为实现排口超标排放事前预警,本研究以长江泰州段两类典型排口(污水处理设施排口和工业企业清净下水排口)为例,利用排口污染物监测数据与气象数据,基于长短期记忆神经网络(LSTM)、门控循环单元(GRU)、卷积循环神经网络(CRNN)等深度学习算法构建多污染因子(总氮、氨氮、COD、总磷)浓度预测模型,并结合SHAP分析结果识别影响排口水质预测的重要因素.结果表明:(1)单层与双层GRU模型在排污口未来6 h污染物浓度预测中表现较好,R2可达0.67~0.81;(2)自相关变量的累积重要性绝对值占比超80%,对排口污染物浓度预测的影响显著大于其他输入变量.该方法有潜力拓展应用至其它排污口类型及其它污染因子的浓度预测,为排口污染预警和全链条管理提供技术支撑.  相似文献   
57.
研究斜生栅藻对沼液的净化效果,并分析沼液中土著菌对污染物去除效果的影响。在不同的初始藻细胞接种量条件下,根据藻细胞干重、细菌总数及COD、TP和TN浓度的变化趋势,比较斜生栅藻对原沼液和灭菌沼液的净化效果。在藻类培养初期,沼液中土著菌与斜生栅藻之间存在明显的共生关系,当初始藻细胞接种量为0.1 g·L-1时,原沼液中藻细胞干重达到最大值即2.11 g·L-1。在藻类对数生长阶段,沼液中土著菌与斜生栅藻在藻细胞生长量和污染物去除方面表现出明显的协同作用。研究结果表明,斜生栅藻与土著菌组成的共生系统对沼液具有较好的净化作用,且所得的藻类生物量可以作为产能原料。  相似文献   
58.
针对不同形态氮类营养物在城市污水处理系统中迁移转化机理尚不明确这一问题,通过现场监测和实验室模拟分析,研究不同形态氮类营养物在整个城市污水处理系统(A/A/O工艺)中的转化特性。研究结果表明,在原污水总氮中溶解态氮和颗粒态氮比例相当,浓度分别为39.28 mg/L和41.24 mg/L,无机氮是溶解态氮的主要成分,比例占93.2%(36.61 mg/L),而有机氮含量极少,仅为2.67 mg/L。在颗粒态氮中有机氮比重很大,约占96.58 %(39.83 mg/L)。在整个一级处理过程中溶解态氮变化量很小,而颗粒态有机氮减少了45%,总氮降低主要是由于颗粒态有机氮通过沉淀作用去除而实现的。现场监测和模拟实验结果表明,溶解性有机氮在厌氧区和缺氧区中由于被厌氧微生物降解而大幅度减少,而在好氧区却有一定程度的增加。二级出水中的氮主要还是以无机氮为主,可通过进一步优化工艺参数来强化系统硝化/反硝化作用,去除污水中残留的无机氮。  相似文献   
59.
湖泊营养物基准参照状态的科学合理确定是营养物基准制定的重要技术基础之一。以四川邛海为例,将系统动力学模型耦合多种数学模型,对湖泊营养物的产生、分布及输移进行系统模拟,并结合系统反演方法获得湖泊近几十年不同水文条件下的各营养物浓度演化过程及湖泊富营养化水平。结果表明,经过试验校准的系统仿真模型能够较真实地反映湖泊历史富营养化变化过程,据此确定了湖泊营养物基准参照状态:TP浓度为0.008~0.015 mg/L;TN浓度为0.286~0.323 mg/L;Chl-a浓度为2.140~4.211 μg/L;透明度(SD)为1.862~2.731 m。  相似文献   
60.
湿地是自然界最具生物多样性和较高生产力的生态系统,对维持地球生态系统健康和调节气候、保持生物多样性等具有重要作用。然而由于受到不合理开发和人类活动的影响,湿地及其周边氮磷营养盐过量富集,导致湿地物种组成退化、生物多样性降低、湿地萎缩、湿地结构和功能受损等问题。目前,世界各国都高度重视湿地的生态保育和建设项目控制,由于我国在该领域起步相对较晚,生态保育和调控的理论及技术手段急需提升。湿地营养物基准是营养物在湿地中产生的生态效应不危及湿地水生态系统和或下游水体功能和用途的最大可接受浓度或限值,基准指标包括原因变量(水体和沉积物中的氮磷浓度)、生物反应变量(生物量)和支持变量(水文、传导率和粒度等)。湿地营养物基准是湿地富营养化识别、评价、管理以及湿地生态系统恢复的重要依据,也是控制下游水体营养物负荷,保护下游水体的重要支撑。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号